跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:夏屏文
研究生(外文):Pingdwende LoucmaneSawadogo
論文名稱:應用WRF/Fluent數值模擬於蘭嶼島的大氣紊流分析
論文名稱(外文):Application of WRF/Fluent coupling to the analysis of atmospheric turbulence around the Orchid Island
指導教授:苗君易苗君易引用關係
指導教授(外文):Jiun-Jih Miau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:132
外文關鍵詞:WRF/Fluent couplingCFDFlow over complex terrainTurbulence Modelling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
There is an increasing interest predominantly away from coast. Thus, it is necessary to accurately model and simulate wind flow over complex terrain for forecasting and optimizing wind energy production.
Simulating the wind flows using the real wind conditions over the wind farm is highly recommended to investigate on the atmospheric boundary layer. The real ABL contains several characteristics that have not been considered in this research such as flow stratification based on varying weather conditions. The effects of buoyancy which is neglected in this research can be included in any future work which makes the modeling flows more challenging as the effects on the atmosphere changes rapidly. The aim of this research is to simulate and analyze the wind flow characteristics around a complex terrain, the Orchid Island in Taiwan, using Reynolds Averaged Navier-Stokes equation (RANS) which are prominent when considering the wind energy, air and maritime transportation. The mesh independency has been evaluated first, then a uniform constant boundary conditions has been applied to determine the suitable 2-equation turbulence model between (k-ω SST, k-ε EWT, k-ω). After selecting k-ω SST, the 2-equation turbulence model has used to run a simulation over the four directions of the domain. WRF has been coupled with FLUENT using a surface B spline interpolation and using the 2-equation turbulence model (k-ω SST) to evaluate the turbulent flows over complex terrains using under real atmospheric conditions. From the results, the impact of the terrain and canopy terrain on the flow near the import could be observed. The results also showed that the current WRF/Fluent coupling has the potential to predict wind speed acceptably well when the inlet flow direction is less complex and under low wind speed. Additionally, more than 50 % reduction in error with WRF/Fluent coupling compared to WRF alone is achieved and a maximum error of about 20% between observed data and WRF/Fluent coupling using B spline surface interpolation is achieved.
Finally, the development of the turbulence generated by wind coming from the most complex domain can create challenges for a pilot trying to land an aircraft at the airport.
Abstract i
Acknowledgements iii
Content v
List of Tables xi
List of Figures xii
Nomenclature xvi
Chapter I Introduction 1
1.1 Motivation 1
1.2 Selecting an Approach 2
1.2.1 Historic Wind Flow Modeling 2
1.2.2 CFD for Modeling Wind Flow 6
1.2.3 Modeling Turbulence within the RANS Approach 9
1.2.4 Coupling Method 11
1.3 Objective 12
1.4 Contributions 13
Chapter II Atmospheric Boundary Layer 14
2.1 Introduction 14
2.2 Governing Equations 16
2.2.1 Coriolis Effect 17
2.3 Velocity Flow Profiles 19
2.3.1 Log Law 19
2.4 Wall Functions 20
2.5 Roughness Model 22
2.5.1 Roughness Length 22
Chapter III Numerical Modeling 24
3.1 Introduction 24
3.1.1 Linear Models 24
3.1.2 Reynolds average Navier-Stokes equation (RANS) 25
3.1.3 Large eddy simulations(LES) 25
3.1.4 Direct numerical simulations(DNS) 26
3.2 Governing Equation 26
3.2.1 Filtered Navier-Stokes Equation 27
3.2.2 Reynolds-averaged Navier-Stokes equations 27
3.3 Turbulence Modeling 28
3.3.1 Turbulence closure methods 28
3.3.2 Boussinesq Approximation 29
3.3.3 K-epsilon (K-ε) realizable Enhanced Wall Treatment (EWT) model 30
3.3.4 K-omega (K-ω) model 31
3.3.5 K-omega (K-ω) Shear stress transport (SST) model 33
3.3.6 Summary of turbulence models 34
3.4 Discretization schemes 34
3.4.1 Types of differencing schemes 35
3.4.1.1 Conservation 35
3.4.1.2 Boundedness 36
3.4.1.3 Transportiveness 36
3.4.1.4 Accuracy 37
3.4.2 Central differencing scheme 37
3.4.3 Upwind differencing scheme 38
3.4.3.1 First order upwind 39
3.4.3.2 Second order upwind 39
3.4.4 Hybrid differencing scheme 40
Chapter IV Weather Forecasting and Research(WRF) Model 41
4.1 WRF model description 41
4.2 WRF software 41
4.3 WRF Preprocessing System (WPS) 43
Chapter V Computational Fluid Dynamics(CFD) Modeling 46
5.1 Introduction 46
5.1.1 ANSYS-Fluent 47
5.2 Methodology 48
5.2.1 Pre-processing 49
5.2.2 Solver and post-processing 50
5.3 Meshing 51
5.3.1 Meshing quality 52
5.3.2 Height of first mesh cell 53
5.3.3 Mesh cell height in atmospheric flows 54
5.3.4 Convergence and evolution factors 55
5.3.5 Mesh Independency 56
5.4 Fluent solvers 56
5.4.1 Pressure based solver 57
5.4.2 Density based solver 58
5.4.3 SIMPLE algorithm for decoupling pressure and velocity 59
5.5 Interpolation Method 60
5.5.1 B Spline Interpolation Method 60
5.6 Boundary Conditions 62
5.6.1 Inlet condition 62
5.6.2 Pressure Outlet condition 63
5.6.3 Wall condition 63
5.6.4 Symmetry condition 64
5.7 User defined functions(UDFs) 64
5.8 Solution initialization 65
5.8.1 Residual Target 67
5.8.2 Under-Relaxation Factor 68
Chapter VI Wind Flow Over Complex Terrain 69
6.1 Introduction 69
6.1.1 Orchid Island description 69
6.2 Numerical setup 70
6.2.1 Computational domain 70
6.2.2 Numerical setup 71
6.2.3 Boundary conditions 73
Chapter VII Results and Discussion 76
7.1 Domain 76
7.2 Mesh Independency 81
7.2.1 Results 81
7.2.2 Discussion 82
7.3 Turbulence Model Selection 83
7.3.1 Results 83
7.3.2 Discussion 85
7.4 Impact of the flow direction using K-ω SST with log inlet velocity 86
7.4.1 Results 86
7.4.2 Discussion 88
7.5 WRF/Fluent Coupling 91
7.5.1 Results 91
7.5.2 Discussion 96
7. 6 Validation 97
7.6.1 Results 97
7.6.2 Discussion 99
7. 7 Crosswind effect 100
7. 7.1 Results 100
7. 7.2 Discussion 102
Chapter VIII Conclusion and Future Work 104
8.1 Conclusion 104
8.2 Future work 105
References 108
References
[1]Kim, Hyun-Goo & Patel, Virendra. (2000). Test Of Turbulence Models For Wind Flow Over Terrain With Separation And Recirculation. Boundary-Layer Meteorology. 94. 5-21. 10.1023/A:1002450414410
[2] J. O'Sullivan(2012). Modelling wind flow over complex terrain. PhD Thesis-University of Auckland. Research Space@ Auckland
[3] Li, Lei & Zhang, Lijie & Zhang, Ning & Hu, Fei & Jiang, Yin & Jiang, Weimei. (2010). Application of FLUENT on fine-scale simulation of wind field over complex terrain. Sciences in Cold and Arid Regions, 2(5): 0411–0418
[4] Haupt, Sue & Zajaczkowski, Frank & J. Schmehl, K. (2010). Modeling Fluctuating Winds by Blending Mesoscale Model Data with Computational Fluid Dynamics (Invited). American Geophysical Union, Fall Meeting , abstract id. A44D-02
[5] M. Mughal. (2016). Wind Prediction Modelling and Validation using Coherent Doppler LIDAR Data. PhD Thesis-Curtin University
[6] Skamarock, William C, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker, Wei Wang, and Jordan G Powers. (2008). A Description of the Advanced Research WRF Version 3.
[7] Carpenter, Richard L, B. L Shaw, M. Margulis, K. S Barr, T. Baynard, R. Munson, P. Wanninger, D. Yates, S.L Thomas, and J. Sharp. (2013). Short Term Numerical Forecasts Using Wind Tracer Lidar Data. 4th Conf. Weather, Climate, New Energy Economy AMS, 7-­‐10 January 2013, Austin, TX
[8] Awan, Nauman K, H Truhetz, and A Gobiet. (2011). Parameterization-Induced Error Characteristics of MM5 and WRF Operated in Climate Mode over the Alpine Region: An Ensemble-Based Analysis., American Meteorological Society. Journal of climate volume 24. https://journals.ametsoc.org/doi/abs/10.1175/2011JCLI3674.1
[9] Hanna, Steven R., and Ruixin Yang. (2001). Evaluations of Mesoscale Models' Simulations of near-Surface Winds, Temperature Gradients, and Mixing Depths. Journal of Applied Meteorology volume 40. https://journals.ametsoc.org/doi/full/10.1175/1520-0450%282001%29040%3C1095%3AEOMMSO%3E2.0.CO%3B2
[10] Reid, Steve J., and Richard Turner. (2001). Correlation of Real and Model Wind Speeds in Different Terrains. Weather and forecasting volume 16. https://journals.ametsoc.org/doi/pdf/10.1175/1520-0434%282001%29016%3C0620%3ACORAMW%3E2.0.CO%3B2
[11] Jiménez, Pedro A, J.F González-Rouco, E. García-Bustamante, J Navarro, J. P Montávez, J Vilà-Guerau de Arellano, J Dudhia, and A. Muñoz-Roldan. (2010). Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation. Journal of Applied Meteorology and climatology volume 49. https://journals.ametsoc.org/doi/pdf/10.1175/2009JAMC2175.1
[12] Yamadaa, Tetsuji, and Katsuyuki Koikeb. (2010). The A2C Mesoscale Meteorological Modeling System for Computational Wind Engineering Applications. The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA
[13] Hanjalic, Kemal. (2005). Will RANS survive LES? A view of perspectives. Journal of Fluids Engineering. 127. 831. 10.1115/1.2037084.
[14] Luca, I & Sadiki, A. (2008). New insight into the functional dependence rules in turbulence modelling. International Journal of Engineering Science. 46. 1053-1062. 10.1016/j.ijengsci.2008.04.004.
[15] A Bechmann, N N Sørensen, J Johansen, S Vinther, B S Nielsen and P Botha (2007). Hybrid RANS/LES Method for High Reynolds Numbers, Applied to Atmospheric Flow over Complex Terrain. Journal of Physics: Conference Series, Volume 75.
[16] Réthoré, Pierre-Elouan & N Sø rensen, Niels & Bechmann, Andreas. (2010). Modelling Issues with Wind Turbine Wake and Atmospheric Turbulence. Torque 2010: The science of making torque from wind. European Wind Energy Association (EWEA). p. 349-357.
[17] P.J.Mason and J.C.King.(1985).Measurements and predictions of flow and Turbulence over isolated hill of moderate slope, Quarterly journal of royal meteorological society, 111, pp 617-640.
[18] F.A. Castro, J.M.L.M. Palma and A. Silva Lopes. (2003). Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier-Strokes Equation (k-ϵ Turbulence Model). Boundary Layer Meteorology 107: pp 510-530.
[19] N.N. Sørensen.(1995) General purpose Flow Solver Applied to Flow Over Hills. Risø National Lab, Roskilde, Denmark. Risø-R-827(EN), pp 112-128.
[20] O. Kruger, C. Schrodinger, A. Lengwinat, and C. Oliver Paschereit.(2004) Numerical modeling and validation of the wind flow over the lake wannsee. Proceedings of the 6th European Conference on Computational Fluid Dynamics, 20-25 July, Barcelona, Spain, c(Wccm Xi): pp 5217–5228.
[21] J. Manning, J. Woodcock, J. F. Corbett, R. Whiting, J. Bleeg, L. Landberg, and A. Tindal. (2011) Validation and challenges of cfd in complex terrain for real world wind farms. Annual conference of the European Wind Energy Association, (1758).
[22] M. Avila, A. Folch, G. Houzeaux, B. Eguzkitza, L. Prieto, and D. Cabezon. (2013) A parallel cfd model for wind farms. Procedia Computer Science, 18: pp 2157–2166.
[23] I. Albuquerque, J. Sanz, L. Landberg, and S. Watson. (2011). Exploring several turbulent closure methods for simulating forest winds in complex terrain. Annual conference of the European Wind Energy Association.
[24] O. Undheim. (2006). Microscale flow modelling. Annual conference of the European Wind Energy Conference & Exhibitionon, (633).
[25] A.R. Gravdahl, S. Rorgemoen, and M. Thogersen. (2002) Power prediction and siting–when the terrain gets rough. In The World Wind Energy Conference and Exhibition.
[26] Nicholls, M, R Pielke, and R Meroney. (1993). Large Eddy Simulation of Microburst Winds Flowing around a Building. Journal of Wind Engineering and Industrial Aerodynamics 46: 229-237.
[27] Yamada, Tetsuji. (2004). Merging CFD and Atmospheric Modeling Capabilities to Simulate Airflows and Dispersion in Urban Areas. Computational Fluid Dynamics Journal 13 (2): 47.
[28] Yamada, Tetsuji, and Katsuyuki Koike. 2011. Downscaling Mesoscale Meteorological Models for Computational Wind Engineering Applications. Journal of Wind Engineering and Industrial Aerodynamics 99(4):199216. doi:http://dx.doi.org/10.1016/j.jweia.2011.01.024.
[29] Liu, Yubao, Tom Warner, Yuewei Liu, Claire Vincent, Wanli Wu, Bill Mahoney, Scott Swerdlin, Keith Parks, and Jennifer Boehnert. (2011). Simultaneous Nested Modeling from the Synoptic Scale to the LES Scale for Wind Energy Applications. Journal of Wind Engineering and Industrial Aerodynamics 99 (4): 308-319.
[30] Yamadaa, Tetsuji, and Katsuyuki Koikeb. (2010). The A2CMesoscale Meteorological Modeling System for Computational Wind Engineering Applications. In The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA. ftp://ftp.atdd.NOAA.gov/pub/cwe2010/Files/Papers/147_yamada.pdf.
[31] Narendran Sridhar. (2015). Numerical prediction of wind flow over complex terrain with shallow and steep hills. PhD Thesis- Mechanical Engineering. Texas Tech University
[32] Andreas Bechmann. (2007). Large-eddy Simulation of Atmospheric Flow Over Complex Terrain. PhD Thesis- Risø National Laboratory. Technical University of Denmark
[33] Stull, Roland B, (1988). An Introduction to Boundary Layer Meteorology (Atmospheric Sciences Library). ISBN13: 9789027727695)
[34] Mason, P. Boundary-Layer Meteorol (1995) 72: 213. https://doi.org/10.1007/BF00712396
[35] S.P. ARYA. (2001) Introduction to Micrometeorology (2nd edition). Academic Press. 420pp.
[36] A. Andren,A. Brown,J. Graf,C.H. Moeng,P.J. Mason,F.T. Nieuwstadt andU. Schumann. (1994). A larger eddy simulation of neutrally stratified boundary layers: A comparison of four computer codes. Quart. J. Roy. Meteorol. Soc. 120 1457–1484.
[37] A.S. Moin and A.M. Yaglom. (1975). Statistical hydrodynamics, Volume 1 and 2. MIT press, Cambridge, MA.
[38] K. Rokenes.(2009) Investigation of terrain effects with respect to wind farm siting. PhD-thesis. Department of energy and process engineering, Norwegian University of Science and Technology.
[39] Giorgio Crasto. (2007) Numerical Simulations of the Atmospheric Boundary Layer. PhD-Thesis. Facoltà di Ingegneria. Università degli Studi di Cagliari
[40] Lecture7: Turbulence Modelling. Introduction to ANSYS Fluent 15 https://www.academia.edu/36090206/Lecture_7_Turbulence_Modeling_Introduction_to_ANSYS_Fluent
[41] J. Walshe. (2003). CFD modeling of wind flows over complex and rough terrain. Doctoral thesis, Loughborough University, United Kingdom.
[42] R.A. Antonia and P.A. Krogstad. (2001). Turbulence structure in boundary layers over different types of surface roughness. Fluid dynamics research, Volume 28, pp 139-157.
[43] J. Wieringa. (1993) Representative roughness parameters for homogeneous terrain. Boundary layer methodology, Volume 63, pp 323-364.
[44] A. Leonard. (1974). Energy cascade in large-eddy simulations of turbulent fluid flows.Advances in Geophysics Volume 18, Part A, 1975, Pages 237-248
[45] Thet Mon Soe, San Yu Khaing. (2017). Comparison of Turbulence Models for Computational Fluid Dynamics Simulation of Wind Flow on Cluster of Buildings in Mandalay. International Journal of Scientific and Research Publications, Volume 7, Issue 8, 337 ISSN 2250-3153.
[46] Fabre, Sylvie and Scanlon, Thomas and Stickland, Matthew and Oldroyd, Andrew (2011) An open source CFD study of air flow over complex terrain. Wind Energy. ISSN 1095-4244 (Unpublished)
[47] P.S. Jackson and J.C.R. Hunt. (1975). Turbulent wind flow over a low hill. Quarterly journal of the Royal Metrological Society, Volume 101, pp 929-955.
[48] G. Botta. (1992) Wind analysis on complex terrain- the case of acqua spruzza. Journal of wind engineering and industrial aerodynamics. Volume 39(1-3), pp 357-366.
[49] B. Lange and J. Hojstrup. (2001). Evolution of the wind resource estimation program WAsP for offshore applications. Journal of wind engineering and industrial aerodynamics. Volume 89, pp 271-291.
[50] Engin Leblebici, Gokhan Ahmet and Ismail H. Tuncer. (2012).Atmospheric Turbulent flow solutions coupled with a mesoscale weather prediction model. 4th conference on The science of Making Torque from Wind, Oldenburg, Germany, Oct 9-11, 2012
[51] Lei Li, Li-Jie Zhang, Ning Zhang, Fei Hu, Yin Jiang, Chun-Yi Xuan and Wei-Mei Jiang.(2010). Study on micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modelling system. Wind and Structures Volume 13, Number 6, November 2010, pages 519-528 DOI:http://dx.doi.org/10.12989/was.2010.13.6.519
[52] J. Smagorinsky. (1963) General circulation experiments with the primitive equations. Monthly weather review. Volume 93, pp 99-165.
[53] J.W. Deardorff. (1970) Preliminary results from numerical integration of the unstable planetary boundary layers. Journal of atmospheric science. Volume 27, pp 1209-1211.
[54] W. Rodi. (1997) Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of wind engineering and industrial aerodynamics. Volume 69-71, pp 55-75.
[55] C.G. Speziale. (1998). Turbulence modeling for time dependent RANS and VLES: A review. American institute of aeronautics and astronautics. Volume 36(2), pp 173-184.
[56] Wilcox D. C. (1993). Turbulence modeling for CFD, La Canada, CA: DCW Industries.
[57] Wilcox D.C. (1988). Reassessment of the Scales Determining Equation for Advanced Turbulence Models; AIAA Journal, Vol. 26, No. 11.
[58] Wilcox D. C. (1998) Multiscale Model for Turbulent Flows; AIAA Journal, Vol. 26, No. 11.
[59] B.E. Launder, B.I. Sharma. (1974). Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk, Lett. Heat Mass Transfer 1 131–138.
[60] T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu. (1995). A new k–ε eddy viscosity model for high Reynolds number turbulent flows, Comput. Fluids 24 227–238.
[61] A.N. Kolmogorov. (1942). Equations of turbulent motion of an incompressible fluid, Izv Acad. Sci. USSR Phys. 6 (1942) 56–58.
[62] B.E. Launder, D.B. Spalding. (1972). Mathematical Models of Turbulence, Academic Press, London.
[63] D. Wilcox. (2006). Turbulence Modelling for CFD, third ed., DCW Industries, Inc.
[64] Menter. F. (1992). Influence of free stream values on K-ω turbulence model predictions. AIAA Journal. Vol 30, No. 6, pp 1657-1658.
[65] Bardina, J. E. Huang. P. G, and Coakley. T. (1997). Turbulence Modelling Validation. AIAA Paper 97-2121, 1997
[66] H K Versteeg and W Malalasekera. (2007). An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD Second Edition.
[67] Gaskell, P. H. and Lau, A. K. C. (1988). Curvature-Compensated Convective Transport; SMART, a New Boundedness Preserving Transport Algorithm, International Journal of Numerical Methods in Fluids, Vol.8, pp 617-641.
[68] Jess A Michelsen. (1995). Explanation of commonly used expressions in Computational Fluid Dynamics AFM/DTU.
[69] Jiri Blazek. (2015). Computational Fluid Dynamics: Principles and Applications (Third Edition) 2015, Pages 337-356 Chapter 10 - Consistency, Accuracy, and Stability.
[70] Courant, Richard; Isaacson, E; Rees, M. (1952). On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences. Comm. Pure Appl. Math. 5 (3): 243.255.
[71] S.V. Patankar. (1980). Numerical heat transfer and fluid flow. Hemisphere-McGraw hill,New York, USA.
[72] D.B. Spalding. (1972). A novel finite difference formula for differential equations involving both 1st and second order derivatives. International journal of numerical methods in engineering. Volume 4, p 551.
[73] D.A. Digraskar. (2010). Simulations of flow over wind turbines. Master thesis in the department of mechanical and industrial engineering, University of Massachusetts Amherst, USA.
[74] ANSYS. (2008). Gambit - Computational Fluid Dynamics Preprocessor from Fluent. http://www.fluent.com/software/gambit/
[75] M. Bruce. (2012). Numerical simulation of seaweed and flow interaction. Master thesis in department of engineering, University of Aberdeen, UK.
[76] ANSYS. ANSYS Fluent 12.0: Meshing help, ANSYS Inc., release 12.1 edition, November 2009c.
[77] https://www.cfd-online.com/Wiki/First_cell_height_calculation
[78] C. Alinot and C. Masson. (2005). K-ϵ model for the atmospheric boundary layer under viscous thermal stratifications. Journal of solar engineering. Volume 127, 99 438-443.
[79] E. Stenmark. (2013). On multiphase flow models in ANSYS CFD software. Master thesis in the department of applied mechanics. Chalmers University of Technology, Sweden.
[80] ANSYS. ANSYS. ANSYS Fluent Theory Guide (2013, ). ANSYS Inc., release 14.5, Canosberg, 2013.
[81] M. Magnini. (2012). CFD modeling of two phase boiling flows in the slug flow regime with an interface capturing technique. Doctoral thesis in the department of energy engineering, nuclear and environmental control. University of Bologna, Italy.
[82] https://www.cfd-online.com/Wiki/SIMPLE_algorithm
[83] http://web.iitd.ac.in/~hegde/cad/lecture/L25_bspline_surface.pdf
[84] https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/surface/bspline-construct.html
[85] https://www.sharcnet.ca/Software/Ansys/16.2.3/enus/help/flu_ug/flu_ug_sec_bc_poutlet.html
[86] ANSYS. Introduction to ANSYS Fluent: Lecture 5-Solver settings. ANSYS Inc., release 13.0, December 2010.
[87] Sørensen, N. N., Bechmann, A., Réthoré, P-E., Cavar, D., Kelly, M. C., & Troen, I. (2012). How fine is fine enough when doing CFD terrain simulations. In Proceedings of EWEA 2012 - European Wind Energy Conference & Exhibition European Wind Energy Association (EWEA).
[88] Argyropoulos, Christos & Markatos, N.C.. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modelling. 39. pp.693-732. 10.1016/j.apm.2014.07.001.
[89] https://www.coursera.org/learn/sports-building-aerodynamics
[90] Turnipseed, Andrew & Anderson, Dean & D Blanken, Peter & M Baugh, William & K Monson, Russell. (2003). Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects. Agricultural and Forest Meteorology. 119. 1-21. 10.1016/S0168-1923(03)00136-9.
[91] Hang, Jian & Sandberg, Mats & Li, Yuguo. (2009). Age of air and air exchange efficiency in idealized city models. Building and Environment - BLDG ENVIRON. 44. 1714-1723. 10.1016/j.buildenv.2008.11.013.
[92] Mason PJ, Thomson DJ. (1992). Stochastic backscatter in large-eddy simulations of boundary layer. The Journal of Fluid Mechanics ; 24: 51–78.
[93] http://www.gauss-centre.eu/gauss-centre/EN/Projects/EnvironmentEnergy/2015/bauer_WRFCLIM.html?nn=1345670
[94] L. Li , L Zhang, N. Zhang, F. Hu , Y. Jiang, W. Jiang.(2010). Application of FLUENT on fine scale simulation of wind field over complex terrain. Sciences in Cold and Arid Regions. 2(5): 0411–0418. DOI: 10.3724/SP.J.1226.2010.00411
[95] L. LI,F. HU, J. JIANG , and X. CHENG.(2006).An application of the RAMS/FLUENT system on the multi-scale numerical simulation of the urban surface layer-A preliminary study. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 2, 2007, 271{280
[96] https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm
[97] Chang, W.-Y. (2014) A Literature Review of Wind Forecasting Methods. Journal of Power and Energy Engineering, 2, 161-168. http://dx.doi.org/10.4236/jpee.2014.24023
[98] Soman, S.S., Zareipour, H., Malik, O. and Mandal, P. (2010) A Review of Wind Power and Wind Speed Forecasting Methods with Different Time Horizons. Proceedings of the 2010 North American Power Symposium, Arlington, 26-28 September 2010, 1-8. http://dx.doi.org/10.1109/NAPS.2010.5619586
[99] Zhao, D.M., Zhu, Y.C. and Zhang, X. (2011) Research on Wind Power Forecasting in Wind Farms. Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, 8-9 September 2011, 175-178. http://dx.doi.org/10.1109/PEAM.2011.6134829
[100] ANSYS ICEM CFD User Manual (2012) https://pdfs.semanticscholar.org/c728/37a63921bbc47c83fa3d6bad8e2d9a86e2f7.pdf
[101] http://www.uotechnology.edu.iq/dep-production/laith/MSc_Lecture_3_1.pdf
[102] M. Hsieh. (2008). Numerical Thermal Simulation of a Turbine Nozzle with suction Side Film Cooling, PhD Thesis, National Cheng Kung University.
[103] Y. Kineri(2012). B-spline surface fitting by iterative geometric interpolation/approximation algorithms. Computer-Aided Design 44 697–708
[104] A.M.H. Nieuwpoort, J.H.M. Gooden, J.L. de Prins. (2006) Wind criteria due to obstacles at and around airports. National Aerospace Laboratory NLR. Executive Summary.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top