跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高健鈞
研究生(外文):Chien-ChunKao
論文名稱:生質燃氣應用於燃燒驅動式微型熱電共生系統之設計與優化
論文名稱(外文):Design and Optimization of Biosyngas-Combustion-Driven Micro Combined Heat and Power System
指導教授:李約亨
指導教授(外文):Yueh-Heng Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:77
中文關鍵詞:生質燃氣熱光電微型熱電共生系統觸媒田口法
外文關鍵詞:Syngasmicro CHP systemthermophotovoltaic (TPV)catalytic reactionTaguchi method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗設置了一熱電共生系統並以田口法提升整體系統效能。本實驗利用熱光電系統以及史特林引擎做為複合式發電系統。熱光電系統的燃燒器為整體系統的主軸,其同心圓的設計能夠將兩側導入不同燃料輸入,並且由鉑金製作而成。本實驗使用氫氣和一氧化碳代替生質燃氣作為輸入燃料至燃燒氣的內環中,並以甲烷代替天然氣體,預混空氣至外環中。設置不同的氫氣-一氧化碳之比例觀察其在燃燒氣中的反應狀況。實驗中內外環流速固定,並將內環氫氣與一氧化碳的比例分成10等分(100%氫氣+0%一氧化碳、90%氫氣+10%一氧化碳、…、10%氫氣+90%一氧化碳),且當量比調整0.6、0.8、1.0、1.2做比較,在當量比較低的情況下,當一氧化碳含量增加時,燃燒器表面的光釋放的改變較不明顯;但當量比大於1.0,一旦增加一氧化碳在內環的比例,所量測到的光釋放有明顯的改變,在純氫氣的條件下光釋放小於30,000W/m2到含有90%的一氧化碳,其光釋放可大於50,000W/m2。
本系統與史特林引擎進行整合,並做整體效率的測試與估算,由於水冷系統的設計與整合使得整體系統效率大幅提升。若僅考慮發電效率,僅有3%的能量轉換,若將整體熱電聯產系統進行分析,則可達33%的總效率。最後,本研究利用田口法進行系統優化,得到系統參數的重要性分析,以及最佳系統效率可達到近40%。
This study adopted a thermophotovoltaic(TPV) system assembled with a Stirling engine as a combined heat and power(CHP) system and using syngas as input fuel to achieve the goal. A micro TPV combustor was the main component for the CHP system. The micro TPV combustor is a coaxial tube which is made of platinum. H2 and CO premixed with air are the fuel alternative as syngas delivered to inner channel while premixed CH4-air delivered to the outer channel of the micro TPV combustor. Different mixing and equivalence ratios of H2 to CO were set to examine the combustion characteristics and flame behavior through the micro TPV combustor. Due to the higher absorptivity of CO, the rising amount of CO concentration blocked the catalytic surface causing a lower surface reaction of H2. Moreover, in rich-CO condition, H2 reactions promote CO oxidation through the combustion regions resulting in the incandescent emits from the micro TPV combustor more uniform. Although flashback occurs at high-velocity conditions, it has shown that with the presence of CO, it has a higher irradiance and uniformity emission of the micro TPV combustor.
A Stirling engine was assembled with micro-TPV combustor to convert the waste heat to electricity and hot water supply. The CHP system is able to improve the overall efficiency with the assistance of power and heat output installation. At last, the Taguchi method was used to optimize the operation condition of the fuel delivery through the micro TPV combustor. The overall efficiency could reach almost 40%.
摘要 I
Abstract II
致謝 III
Content IV
List of Tables VII
List of Figures IX
Nomenclature XI
Chapter 1 Introduction 1
1-1 Background 1
1-2 Bioenergy 4
1-3 Combined heat and power system 6
1-4 Micro power generation 9
1-4.1 TPV system 10
1-4.2 Stirling engine 11
1-5 Literature review 15
1-6 Motivation 18
1-7 Objective 19
Chapter 2 Experimental setup and method 21
2.1 Experimental apparatus 21
2.1.1 Micro TPV combustor 21
2.1.2 Stirling engine 23
2.2 Mathematical formulations 24
2.3 Optimization method 25
2.4 Measurement systems 28
2.4.1 Temperature measurement system 28
2.4.2 Integrating sphere 31
Chapter 3 Combustion Characteristics and Operational Mode of Micro TPV Combustor 33
3.1 Operational range of the micro TPV combustor 35
3.2 Flame behavior of the micro TPV combustor 41
3.3 Irradiation measurement of the micro TPV combustor 44
3.4 Temperature measurements of the micro TPV combustor 46
Chapter 4 Demonstration and Optimization of Micro-CHP System 49
4.1 Demonstration of Micro-CHP system 49
4.1.1 Performance of the micro TPV combustor 49
4.1.2 Demonstration of the Micro-CHP system 51
4.2 Optimization for overall efficiency of micro-CHP 57
4.2.1 Selection of optimization indicator 57
4.2.2 Characteristic measurement of micro TPV combustor 61
4.2.3 Signal-to-noise ratio 65
4.2.4 Confirmation experiment 67
Chapter 5 Conclusions 69
Reference 73
[1] A. Zahnd, H.M. Kimber, Benefits from a renewable energy village electrification system, Renewable Energy, 34 362-368(2009).
[2] A. Gurung, O.P. Gurung, S.E. Oh, The potential of a renewable energy technology for rural electrification in Nepal: A case study from Tangting, Renewable Energy, 36 3203-3210(2011).
[3] K. Bos, D. Chaplin, A. Mamun, Benefits and challenges of expanding grid electricity in Africa: A review of rigorous evidence on household impacts in developing countries, Energy for Sustainable Development, 44 64-77(2018).
[4] M. Aklin, S.P. Harish, J. Urpelainen, A global analysis of progress in household electrification, Energy Policy, 122 421-428(2018).
[5] I.E. Agency, 1.1 billion people still lack electricity. This could be the solution., (2018).
[6] B. Schlamadinger, M. Apps, F. Bohlin, L. Gustavsson, G. Jungmeier, G. Marland, K. Pingoud, I. Savolainen, Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems, Biomass and Bioenergy, 13 359-375(1997).
[7] R. Ravindran, A.K. Jaiswal, Exploitation of Food Industry Waste for High-Value Products, Trends in Biotechnology, 34 58-69(2016).
[8] S.K. Bhatia, H.-S. Joo, Y.-H. Yang, Biowaste-to-bioenergy using biological methods – A mini-review, Energy Conversion and Management, 177 640-660(2018).
[9] Sahar, S. Sadaf, J. Iqbal, I. Ullah, H.N. Bhatti, S. Nouren, R. Habib ur, J. Nisar, M. Iqbal, Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel, Sustainable Cities and Society, 41 220-226(2018).
[10] A. Ware, N. Power, Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland, Renewable Energy, 97 541-549(2016).
[11] F. Wang, Y. Jiang, W. Guo, K. Niu, R. Zhang, S. Hou, M. Wang, Y. Yi, C. Zhu, C. Jia, X. Fang, An environmentally friendly and productive process for bioethanol production from potato waste, Biotechnology for Biofuels, 9 50(2016).
[12] C.A.V.B. de Sales, D.M.Y. Maya, E.E.S. Lora, R.L. Jaén, A.M.M. Reyes, A.M. González, R.V. Andrade, J.D. Martínez, Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents, Energy Conversion and Management, 145 314-323(2017).
[13] J.A. Ruiz, M.C. Juárez, M.P. Morales, P. Muñoz, M.A. Mendívil, Biomass gasification for electricity generation: Review of current technology barriers, Renewable and Sustainable Energy Reviews, 18 174-183(2013).
[14] K.A. Al-Af14ttab, Z.A. Zainal, Micro gas turbine running on naturally aspirated syngas: An experimental investigation, Renewable Energy, 119 210-216(2018).
[15] R. Benelmir, M. Feidt, Energy cogeneration systems and energy management strategy, Energy Conversion and Management, 39 1791-1802(1998).
[16] A. Ozawa, Y. Kudoh, Performance of residential fuel-cell-combined heat and power systems for various household types in Japan, International Journal of Hydrogen Energy, 43 15412-15422(2018).
[17] A.D. Peacock, M. Newborough, Impact of micro-CHP systems on domestic sector CO2 emissions, Applied Thermal Engineering, 25 2653-2676(2005).
[18] Q.-Y. Li, Q. Chen, X. Zhang, Performance analysis of a rooftop wind solar hybrid heat pump system for buildings, Energy and Buildings, 65 75-83(2013).
[19] T. Srinivas, R. Shankar, Investigation on operating processes for a new solar cooling cogeneration plant, Journal of Solar Energy Engineering, 136 (2014).
[20] E. Gençer, M. Tawarmalani, R. Agrawal, Integrated Solar Thermal Hydrogen and Power Coproduction Process for Continuous Power Supply and Production of Chemicals, in: K.V. Gernaey, J.K. Huusom, R. Gani (Eds.) Computer Aided Chemical Engineering, Elsevier2015, pp. 2291-2296.
[21] P. Mancarella, MES (multi-energy systems): An overview of concepts and evaluation models, Energy, 65 1-17(2014).
[22] S. Martinez, G. Michaux, P. Salagnac, J.-L. Bouvier, Micro-combined heat and power systems (micro-CHP) based on renewable energy sources, Energy Conversion and Management, 154 262-285(2017).
[23] L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, Dynamic analysis of PEMFC-based CHP systems for domestic application, Applied Energy, 91 13-28(2012).
[24] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88 981-1007(2011).
[25] A. González, J.-R. Riba, A. Rius, Combined heat and power design based on environmental and cost criteria, Energy, 116 922-932(2016).
[26] G. Prinsloo, R. Dobson, A. Mammoli, Model based design of a novel Stirling solar micro-cogeneration system with performance and fuel transition analysis for rural African village locations, Solar Energy, 133 315-330(2016).
[27] M. Bianchi, A. De Pascale, P.R. Spina, Guidelines for residential micro-CHP systems design, Applied Energy, 97 673-685(2012).
[28] M. Chen, H. Lund, L.A. Rosendahl, T.J. Condra, Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today’s CHP systems, Applied Energy, 87 1231-1238(2010).
[29] A. Modi, F. Bühler, J.G. Andreasen, F. Haglind, A review of solar energy based heat and power generation systems, Renewable and Sustainable Energy Reviews, 67 1047-1064(2017).
[30] S. Frigo, R. Gabbrielli, L. Linari, Feasibility study of a CHP plant with steam turbine and biomass gasification for tissue paper production, Energy Procedia, 148 751-757(2018).
[31] G. Xiao, T. Yang, H. Liu, D. Ni, M.L. Ferrari, M. Li, Z. Luo, K. Cen, M. Ni, Recuperators for micro gas turbines: A review, Applied Energy, 197 83-99(2017).
[32] K. Alanne, K. Saari, M. Kuosa, J. Jokisalo, A.R. Martin, Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE), Applied Thermal Engineering, 44 11-20(2012).
[33] S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, F.B. Prinz, Design and fabrication of a micro fuel cell array with “flip-flop interconnection, Journal of Power Sources, 112 410-418(2002).
[34] W.M. Yang, S.K. Chou, C. Shu, Z.W. Li, H. Xue, A prototype microthermophotovoltaic power generator, Applied Physics Letters, 84 3864-3866(2004).
[35] P.C. Saxton, A.L. Moran, M.J. Harper, K.W. Lindler, Thermophotovoltaic emitter material selection and design, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), 1997, pp. 1107-1112 vol.1102.
[36] B. Bitnar, W. Durisch, J.C. Mayor, H. Sigg, H.R. Tschudi, Characterisation of rare earth selective emitters for thermophotovoltaic applications, Solar Energy Materials and Solar Cells, 73 221-234(2002).
[37] T. Aicher, P. Kästner, A. Gopinath, A. Gombert, A.W. Bett, T. Schlegl, C. Hebling, J. Luther, Development of a Novel TPV Power Generator, AIP Conference Proceedings, 738 71-78(2004).
[38] L. Fraas, J. Samaras, H. Huang, L. Minkin, J. Avery, W. Daniels, S. Hui, TPV generators using the radiant tube burner configuration, Proceedings of 17th European PV Solar Energy Conference, Munich, Germany, 2001.
[39] S.C. Costa, H. Barrutia, J.A. Esnaola, M. Tutar, Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator, Energy Conversion and Management, 67 57-65(2013).
[40] İ. Batmaz, S. Üstün, Design and manufacturing of a V-type Stirling engine with double heaters, Applied Energy, 85 1041-1049(2008).
[41] H. Hachem, R. Gheith, F. Aloui, S. Ben Nasrallah, Technological challenges and optimization efforts of the Stirling machine: A review, Energy Conversion and Management, 171 1365-1387(2018).
[42] P. Balcombe, D. Rigby, A. Azapagic, Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar PV, Stirling engine CHP and battery storage, Applied Energy, 155 393-408(2015).
[43] B. Cullen, J. McGovern, Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine, Energy, 35 1017-1023(2010).
[44] M. Güven, H. Bedir, G. Anlaş, Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine, Energy Conversion and Management, 180 411-424(2019).
[45] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, 58 2059-2062(1987).
[46] Y. Nam, Y.X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, E.N. Wang, Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters, Solar Energy Materials and Solar Cells, 122 287-296(2014).
[47] M. Chirumamilla, A.S. Roberts, F. Ding, D. Wang, P.K. Kristensen, S.I. Bozhevolnyi, K. Pedersen, Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications, Opt. Mater. Express, 6 2704-2714(2016).
[48] Y.X. Yeng, J.B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J.D. Joannopoulos, M. Soljacic, I. Čelanović, Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals, Opt. Express, 22 21711-21718(2014).
[49] K. Qiu, A.C.S. Hayden, Development of a novel cascading TPV and TE power generation system, Applied Energy, 91 304-308(2012).
[50] K. Qiu, A.C.S. Hayden, Implementation of a TPV integrated boiler for micro-CHP in residential buildings, Applied Energy, 134 143-149(2014).
[51] N. Aste, G. Chiesa, F. Verri, Design, development and performance monitoring of a photovoltaic-thermal (PVT) air collector, Renewable Energy, 33 914-927(2008).
[52] I. Arashnia, G. Najafi, B. Ghobadian, T. Yusaf, R. Mamat, M. Kettner, Development of Micro-scale Biomass-fuelled CHP System Using Stirling Engine, Energy Procedia, 75 1108-1113(2015).
[53] K. Comakli, F. Simsek, O. Comakli, B. Sahin, Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method, Applied Energy, 86 2451-2458(2009).
[54] S. Coşkun, A.R. Motorcu, N. Yamankaradeniz, E. Pulat, Evaluation of control parameters’ effects on system performance with Taguchi method in waste heat recovery application using mechanical heat pump, International Journal of Refrigeration, 35 795-809(2012).
[55] S. Salomons, R.E. Hayes, M. Votsmeier, The promotion of carbon monoxide oxidation by hydrogen on supported platinum catalyst, Applied Catalysis A: General, 352 27-34(2009).
[56] Y.-H. Li, G.-B. Chen, F.-H. Wu, T.-S. Cheng, Y.-C. Chao, Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel, Combustion and Flame, 159 1644-1651(2012).
[57] Y.-H. Li, J.-R. Hong, Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor, Applied Energy, 211 843-853(2018).
[58] A. Balaram Naik, A. Chennakeshava Reddy, Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA), Thermal Science and Engineering Progress, 8 327-339(2018).
[59] Y. Ghermay, J. Mantzaras, R. Bombach, Experimental and numerical investigation of hetero-/homogeneous combustion of CO/H2/O2/N2 mixtures over platinum at pressures up to 5bar, Proceedings of the Combustion Institute, 33 1827-1835(2011).
[60] X. Zheng, J. Mantzaras, R. Bombach, Homogeneous combustion of fuel-lean syngas mixtures over platinum at elevated pressures and preheats, Combustion and Flame, 160 155-169(2013).
[61] S. Pramanik, R.V. Ravikrishna, Numerical study of rich catalytic combustion of syngas, International Journal of Hydrogen Energy, 42 16514-16528(2017).
[62] H. Taniguchi, K. Mouri, T. Nakahara, N. Arai, Exergy analysis on combustion and energy conversion processes, Energy, 30 111-117(2005).
[63] Y. Wu, W. Yang, W. Blasiak, Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass, 2014.
[64] I. Martínez', lectures on Thermodynamics, (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top