|
[1] A. Zahnd, H.M. Kimber, Benefits from a renewable energy village electrification system, Renewable Energy, 34 362-368(2009). [2] A. Gurung, O.P. Gurung, S.E. Oh, The potential of a renewable energy technology for rural electrification in Nepal: A case study from Tangting, Renewable Energy, 36 3203-3210(2011). [3] K. Bos, D. Chaplin, A. Mamun, Benefits and challenges of expanding grid electricity in Africa: A review of rigorous evidence on household impacts in developing countries, Energy for Sustainable Development, 44 64-77(2018). [4] M. Aklin, S.P. Harish, J. Urpelainen, A global analysis of progress in household electrification, Energy Policy, 122 421-428(2018). [5] I.E. Agency, 1.1 billion people still lack electricity. This could be the solution., (2018). [6] B. Schlamadinger, M. Apps, F. Bohlin, L. Gustavsson, G. Jungmeier, G. Marland, K. Pingoud, I. Savolainen, Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems, Biomass and Bioenergy, 13 359-375(1997). [7] R. Ravindran, A.K. Jaiswal, Exploitation of Food Industry Waste for High-Value Products, Trends in Biotechnology, 34 58-69(2016). [8] S.K. Bhatia, H.-S. Joo, Y.-H. Yang, Biowaste-to-bioenergy using biological methods – A mini-review, Energy Conversion and Management, 177 640-660(2018). [9] Sahar, S. Sadaf, J. Iqbal, I. Ullah, H.N. Bhatti, S. Nouren, R. Habib ur, J. Nisar, M. Iqbal, Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel, Sustainable Cities and Society, 41 220-226(2018). [10] A. Ware, N. Power, Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland, Renewable Energy, 97 541-549(2016). [11] F. Wang, Y. Jiang, W. Guo, K. Niu, R. Zhang, S. Hou, M. Wang, Y. Yi, C. Zhu, C. Jia, X. Fang, An environmentally friendly and productive process for bioethanol production from potato waste, Biotechnology for Biofuels, 9 50(2016). [12] C.A.V.B. de Sales, D.M.Y. Maya, E.E.S. Lora, R.L. Jaén, A.M.M. Reyes, A.M. González, R.V. Andrade, J.D. Martínez, Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents, Energy Conversion and Management, 145 314-323(2017). [13] J.A. Ruiz, M.C. Juárez, M.P. Morales, P. Muñoz, M.A. Mendívil, Biomass gasification for electricity generation: Review of current technology barriers, Renewable and Sustainable Energy Reviews, 18 174-183(2013). [14] K.A. Al-Af14ttab, Z.A. Zainal, Micro gas turbine running on naturally aspirated syngas: An experimental investigation, Renewable Energy, 119 210-216(2018). [15] R. Benelmir, M. Feidt, Energy cogeneration systems and energy management strategy, Energy Conversion and Management, 39 1791-1802(1998). [16] A. Ozawa, Y. Kudoh, Performance of residential fuel-cell-combined heat and power systems for various household types in Japan, International Journal of Hydrogen Energy, 43 15412-15422(2018). [17] A.D. Peacock, M. Newborough, Impact of micro-CHP systems on domestic sector CO2 emissions, Applied Thermal Engineering, 25 2653-2676(2005). [18] Q.-Y. Li, Q. Chen, X. Zhang, Performance analysis of a rooftop wind solar hybrid heat pump system for buildings, Energy and Buildings, 65 75-83(2013). [19] T. Srinivas, R. Shankar, Investigation on operating processes for a new solar cooling cogeneration plant, Journal of Solar Energy Engineering, 136 (2014). [20] E. Gençer, M. Tawarmalani, R. Agrawal, Integrated Solar Thermal Hydrogen and Power Coproduction Process for Continuous Power Supply and Production of Chemicals, in: K.V. Gernaey, J.K. Huusom, R. Gani (Eds.) Computer Aided Chemical Engineering, Elsevier2015, pp. 2291-2296. [21] P. Mancarella, MES (multi-energy systems): An overview of concepts and evaluation models, Energy, 65 1-17(2014). [22] S. Martinez, G. Michaux, P. Salagnac, J.-L. Bouvier, Micro-combined heat and power systems (micro-CHP) based on renewable energy sources, Energy Conversion and Management, 154 262-285(2017). [23] L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, Dynamic analysis of PEMFC-based CHP systems for domestic application, Applied Energy, 91 13-28(2012). [24] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88 981-1007(2011). [25] A. González, J.-R. Riba, A. Rius, Combined heat and power design based on environmental and cost criteria, Energy, 116 922-932(2016). [26] G. Prinsloo, R. Dobson, A. Mammoli, Model based design of a novel Stirling solar micro-cogeneration system with performance and fuel transition analysis for rural African village locations, Solar Energy, 133 315-330(2016). [27] M. Bianchi, A. De Pascale, P.R. Spina, Guidelines for residential micro-CHP systems design, Applied Energy, 97 673-685(2012). [28] M. Chen, H. Lund, L.A. Rosendahl, T.J. Condra, Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today’s CHP systems, Applied Energy, 87 1231-1238(2010). [29] A. Modi, F. Bühler, J.G. Andreasen, F. Haglind, A review of solar energy based heat and power generation systems, Renewable and Sustainable Energy Reviews, 67 1047-1064(2017). [30] S. Frigo, R. Gabbrielli, L. Linari, Feasibility study of a CHP plant with steam turbine and biomass gasification for tissue paper production, Energy Procedia, 148 751-757(2018). [31] G. Xiao, T. Yang, H. Liu, D. Ni, M.L. Ferrari, M. Li, Z. Luo, K. Cen, M. Ni, Recuperators for micro gas turbines: A review, Applied Energy, 197 83-99(2017). [32] K. Alanne, K. Saari, M. Kuosa, J. Jokisalo, A.R. Martin, Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE), Applied Thermal Engineering, 44 11-20(2012). [33] S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, F.B. Prinz, Design and fabrication of a micro fuel cell array with “flip-flop interconnection, Journal of Power Sources, 112 410-418(2002). [34] W.M. Yang, S.K. Chou, C. Shu, Z.W. Li, H. Xue, A prototype microthermophotovoltaic power generator, Applied Physics Letters, 84 3864-3866(2004). [35] P.C. Saxton, A.L. Moran, M.J. Harper, K.W. Lindler, Thermophotovoltaic emitter material selection and design, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), 1997, pp. 1107-1112 vol.1102. [36] B. Bitnar, W. Durisch, J.C. Mayor, H. Sigg, H.R. Tschudi, Characterisation of rare earth selective emitters for thermophotovoltaic applications, Solar Energy Materials and Solar Cells, 73 221-234(2002). [37] T. Aicher, P. Kästner, A. Gopinath, A. Gombert, A.W. Bett, T. Schlegl, C. Hebling, J. Luther, Development of a Novel TPV Power Generator, AIP Conference Proceedings, 738 71-78(2004). [38] L. Fraas, J. Samaras, H. Huang, L. Minkin, J. Avery, W. Daniels, S. Hui, TPV generators using the radiant tube burner configuration, Proceedings of 17th European PV Solar Energy Conference, Munich, Germany, 2001. [39] S.C. Costa, H. Barrutia, J.A. Esnaola, M. Tutar, Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator, Energy Conversion and Management, 67 57-65(2013). [40] İ. Batmaz, S. Üstün, Design and manufacturing of a V-type Stirling engine with double heaters, Applied Energy, 85 1041-1049(2008). [41] H. Hachem, R. Gheith, F. Aloui, S. Ben Nasrallah, Technological challenges and optimization efforts of the Stirling machine: A review, Energy Conversion and Management, 171 1365-1387(2018). [42] P. Balcombe, D. Rigby, A. Azapagic, Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar PV, Stirling engine CHP and battery storage, Applied Energy, 155 393-408(2015). [43] B. Cullen, J. McGovern, Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine, Energy, 35 1017-1023(2010). [44] M. Güven, H. Bedir, G. Anlaş, Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine, Energy Conversion and Management, 180 411-424(2019). [45] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, 58 2059-2062(1987). [46] Y. Nam, Y.X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, E.N. Wang, Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters, Solar Energy Materials and Solar Cells, 122 287-296(2014). [47] M. Chirumamilla, A.S. Roberts, F. Ding, D. Wang, P.K. Kristensen, S.I. Bozhevolnyi, K. Pedersen, Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications, Opt. Mater. Express, 6 2704-2714(2016). [48] Y.X. Yeng, J.B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J.D. Joannopoulos, M. Soljacic, I. Čelanović, Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals, Opt. Express, 22 21711-21718(2014). [49] K. Qiu, A.C.S. Hayden, Development of a novel cascading TPV and TE power generation system, Applied Energy, 91 304-308(2012). [50] K. Qiu, A.C.S. Hayden, Implementation of a TPV integrated boiler for micro-CHP in residential buildings, Applied Energy, 134 143-149(2014). [51] N. Aste, G. Chiesa, F. Verri, Design, development and performance monitoring of a photovoltaic-thermal (PVT) air collector, Renewable Energy, 33 914-927(2008). [52] I. Arashnia, G. Najafi, B. Ghobadian, T. Yusaf, R. Mamat, M. Kettner, Development of Micro-scale Biomass-fuelled CHP System Using Stirling Engine, Energy Procedia, 75 1108-1113(2015). [53] K. Comakli, F. Simsek, O. Comakli, B. Sahin, Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method, Applied Energy, 86 2451-2458(2009). [54] S. Coşkun, A.R. Motorcu, N. Yamankaradeniz, E. Pulat, Evaluation of control parameters’ effects on system performance with Taguchi method in waste heat recovery application using mechanical heat pump, International Journal of Refrigeration, 35 795-809(2012). [55] S. Salomons, R.E. Hayes, M. Votsmeier, The promotion of carbon monoxide oxidation by hydrogen on supported platinum catalyst, Applied Catalysis A: General, 352 27-34(2009). [56] Y.-H. Li, G.-B. Chen, F.-H. Wu, T.-S. Cheng, Y.-C. Chao, Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel, Combustion and Flame, 159 1644-1651(2012). [57] Y.-H. Li, J.-R. Hong, Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor, Applied Energy, 211 843-853(2018). [58] A. Balaram Naik, A. Chennakeshava Reddy, Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA), Thermal Science and Engineering Progress, 8 327-339(2018). [59] Y. Ghermay, J. Mantzaras, R. Bombach, Experimental and numerical investigation of hetero-/homogeneous combustion of CO/H2/O2/N2 mixtures over platinum at pressures up to 5bar, Proceedings of the Combustion Institute, 33 1827-1835(2011). [60] X. Zheng, J. Mantzaras, R. Bombach, Homogeneous combustion of fuel-lean syngas mixtures over platinum at elevated pressures and preheats, Combustion and Flame, 160 155-169(2013). [61] S. Pramanik, R.V. Ravikrishna, Numerical study of rich catalytic combustion of syngas, International Journal of Hydrogen Energy, 42 16514-16528(2017). [62] H. Taniguchi, K. Mouri, T. Nakahara, N. Arai, Exergy analysis on combustion and energy conversion processes, Energy, 30 111-117(2005). [63] Y. Wu, W. Yang, W. Blasiak, Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass, 2014. [64] I. Martínez', lectures on Thermodynamics, (1992).
|