跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施柏舟
研究生(外文):Po-ChouShih
論文名稱:液旋式噴注器之推進劑液態混合的增進
論文名稱(外文):Enhancement of Liquid Mixing Between Propellants in Liquid Cyclonic Injector
指導教授:袁曉峰袁曉峰引用關係
指導教授(外文):Tony Yuan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:煤油基燃料W2/過氧化氫液態火箭推進液旋式噴注器綠色自燃性燃料簡易壓力式渦旋噴嘴
外文關鍵詞:W2kerosene-base fuelhydrogen peroxideliquid cyclonic injectorgreen hypergolic propellantssimplex pressure-swirl atomizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在使用W2與過氧化氫的推進系統中,液旋式噴注器具構造簡單並可使推進劑自燃的特性,但是在自燃點火實驗中亦顯示其具有點火延遲時間較長且時間不穩定等缺點。為了改善此機構,在本研究中以霧化器噴注燃料進而增加燃料與過氧化氫的接觸表面積,希望能提高推進劑於接觸瞬間的液態混合,降低自燃點火延遲時間。
於簡易壓力式渦旋噴嘴(霧化器)的冷流觀察中顯示,選用出口孔徑1 mm、空腔直徑4 mm的渦旋噴嘴可在流率3 g/s以上形成穩定傘狀噴霧(擴散角70°,平均粒徑130 μm);在本研究中將以此設計與液旋式噴注器結合進行自燃點火實驗。
根據熱燃點火實驗之觀察,以渦旋式噴嘴噴注燃料可有效降低其自燃點火延遲時間,但液旋式噴注器之空腔長度與空腔直徑會明顯影響其點火延遲時間及火焰特性;在總空腔長度60 mm (Model L)噴注器實驗中,其自燃點火時間大於5000 ms;而在總空腔長度30 mm(Model M)噴注器的實驗中,其自燃點火延遲約為2500 ms;若再縮短為總空腔長度為16 mm (Model S)噴注器其自燃點火延遲將降低至77 ms,標準差8 ms,但火焰較為擴散且鬆散。
在本研究中,進一步分析液旋式噴注器自燃點火前的火花及氣體噴出速度,在噴注器總空腔長度大於16 mm ( Model M、L)的實驗中,推進劑反應後的氣體噴出速度較快(>30 m/s),使局部高溫的火花未能加熱周圍推進劑時即被高速噴出,故未能達成完整自燃反應;但在總空腔長度16 mm噴注器(Model S)的實驗中,火花噴出速度僅約5 m/s,故當火花產生後有足夠時間加熱週遭達成自燃。
於未來工作中,若能設計空腔長度介於16 mm~30 mm(Model M、S)的噴注器,或加大空腔尺寸,應可找出自燃點延遲時間與火焰空間利用的平衡設計,進而再進一步改善液旋式噴注器之設計。
Despite liquid cyclonic injector has the characteristics of simply structure, it has disadvantages such as long ignition delay time and instability in hot-fire experiment. Hence, in this research, we designed and carried out the atomizer, in the use of improving the instantaneous liquid mixing of propellants for reducing ignition delay time and instability by reducing droplet size and increasing contact surface area.
According to hot-fire experiment, the injection of fuel by atomizer can effectively reduce ignition delay time. Furthermore, chamber length and chamber diameter of liquid cyclonic injector can significantly affect ignition delay time and flame characteristics. In hot-fire experiment of total-chamber-length of 60 mm injector (Model L), the ignition delay time is greater than 5000 ms; in total-chamber-length of 30 mm injector (Model M), the ignition delay time is about 2500 ms; when it’s shortened to total chamber length of 16 mm injector, the ignition delay time is reduced to 77 ms with stander deviation of 8 ms, but the flame is more diffused and looser.
In the future work, if an injector with total-chamber-length between 16 mm to 30 mm or larger chamber diameter can be designed, the balance of ignition delay time and flame characteristics could be found in order to improve the design of liquid cyclonic injector.
摘要 i
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 5
第二章 實驗方法 6
2.1 壓力式渦旋噴嘴原理 8
2.2 冷流實驗方法 9
2.2.1 推進劑流率控制 9
2.2.2 冷流拍攝實驗 10
2.2.3 噴霧粒徑量測 10
2.3 熱燃點火實驗方法 11
2.3.1 實驗數據分析 12
2.3.2 火焰影像處理 12
第三章 實驗設備 13
3.1 推進劑組合 13
3.2 過氧化氫純化系統 14
3.3 流體供應及控制系統 14
3.4 噴霧粒徑量測系統 15
3.5 實驗攝影系統 16
3.6 資料擷取系統 16
第四章 實驗結果與討論 17
4.1 設計壓力式渦旋噴嘴 17
4.1.1 壓克力渦旋噴嘴之冷流實驗觀察 18
4.1.2 內含渦旋噴嘴之上半部噴注器冷流觀察實驗 19
4.2 液旋式噴注器點火延遲時間實驗觀察 21
4.3 液旋式噴注器點火機制探討 22
4.3.1 內部自燃點火液旋式噴注器 23
4.3.2 外部自燃點火液旋式噴注器 25
4.3.3 點火機制分析 26
4.4 總空腔長度改變對火焰形狀之影響 28
4.4.1 內部自燃點火液旋式噴注器火焰形狀觀察 28
4.4.2 外部自燃點火液旋式噴注器火焰形狀觀察 29
第五章 結論與未來工作 31
參考文獻 33
1.Melof, B., and Grubelich, M. Investigation of hypergolic fuels with hydrogen peroxide, 37th Joint Propulsion Conference and Exhibit. Salt Lake City, UT, U.S.A , 2001. .
2.Funk, J. E., Rusek, J. J. Assessment of United States Navy Block 0 NHMF/RGHP Propellants, 2nd, International hydrogen peroxide propulsion conference, West Lafayette, IN, 1999.
3.Rusek, J. J., Minthorn, M. K., Purcell, N. L., Pavia, T. C., Gorte, J. R., Hudson, G. C., and McKinney, B., Non-toxic Hypergolic Miscible Fuels Development for Hypergolic Bipropellant Engines, Sixth Annual AIAA BMDO TBMD Conference, San Diego, CA, 1997.
4.She, I. H., Yuan, T., and Chen, Y. T.,Auto-ignition of Kerosene/Hydrogen Peroxcide Bipropellant, AASRC Conference, Yunlin, 2015.
5.Yuan, T., Chen, Y. T., She, I. H., and Huang. B. Semi-hypergolic kerosene/hydrogen peroxide fuel system and its auto-ignition injector design, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015
6.Chuang, P. K., and Yuan. T. The Design and Analysis of Liquid Cyclonic Injector for W2 / Hydrogen Peroxide Propellant System, AASRC Conference, Tainan, 2018.
7.Halder, M. R., Dash, S. K., and Som, S. K. Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size, Experimental Thermal and Fluid Science Vol. 26, No. 8, 2002, pp. 871-878.
8.Datta, A., and Som, S. Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle, Int. J. Heat Fluid Flow Vol. 21, 2000, pp.412–419.
9.Kim, S., Kim, D., Khil, T., and Yoon, Y. Effect of geometry on the liquid film thickness and formation of air core in a swirl injector, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, 2007
10.Zhou, J. Y., and Yuan. T. The Injector Plate Design of a 500 lbf Kerosene Base / H2O2 Liquid Rocket Engine, AASRC Conference, Kaoshiuag, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top