|
References 1.Fauconnier, A., et al. Relation between pain symptoms and the anatomic location of deep infiltrating endometriosis. Fertil. Steril. 78, 719-726 (2002). 2.Adamson, G.D. Endometriosis classification: an update. Curr. Opin. Obstet. Gynecol. 23, 213-220 (2011). 3.Missmer, S.A., et al. Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am. J. Epidemiol. 160, 784-796 (2004). 4.Falcone, T. & Lebovic, D.I. Clinical management of endometriosis. Obstet. Gynecol. 118, 691-705 (2011). 5.Leyland, N., Casper, R., Laberge, P., Singh, S.S. & Sogc. Endometriosis: diagnosis and management. J. Obstet. Gynaecol. Can. 32, S1-32 (2010). 6.Schrager, S., Falleroni, J. & Edgoose, J. Evaluation and treatment of endometriosis. Am. Fam. Physician 87, 107-113 (2013). 7.Facchin, F., et al. Impact of endometriosis on quality of life and mental health: pelvic pain makes the difference. J. Psychosom. Obstet. Gynaecol. 36, 135-141 (2015). 8.Tremellen, K. & Thalluri, V. Influence of Endometriosis on Assisted Reproductive Technology Outcomes: A Systematic Review and Meta-analysis. Obstet. Gynecol. 125, 1498-1499 (2015). 9.Kim, H.S., Kim, T.H., Chung, H.H. & Song, Y.S. Risk and prognosis of ovarian cancer in women with endometriosis: a meta-analysis. Br. J. Cancer 110, 1878-1890 (2014). 10.Acien, P. & Velasco, I. Endometriosis: a disease that remains enigmatic. ISRN Obstet. Gynecol. 2013, 242149 (2013). 11.Sampson, J.A. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am J Pathol 3, 93-110 143 (1927). 12.D'Hooghe, T.M. Clinical relevance of the baboon as a model for the study of endometriosis. Fertil. Steril. 68, 613-625 (1997). 13.Halme, J., Hammond, M.G., Hulka, J.F., Raj, S.G. & Talbert, L.M. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet. Gynecol. 64, 151-154 (1984). 14.Giudice, L.C. & Kao, L.C. Endometriosis. Lancet 364, 1789-1799 (2004). 15.Matsuura, K., Ohtake, H., Katabuchi, H. & Okamura, H. Coelomic metaplasia theory of endometriosis: evidence from in vivo studies and an in vitro experimental model. Gynecol. Obstet. Invest. 47 Suppl 1, 18-20; discussion 20-12 (1999). 16.Nisolle, M. & Donnez, J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil. Steril. 68, 585-596 (1997). 17.Sourial, S., Tempest, N. & Hapangama, D.K. Theories on the pathogenesis of endometriosis. Int J Reprod Med 2014, 179515 (2014). 18.Sasson, I.E. & Taylor, H.S. Stem cells and the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 1127, 106-115 (2008). 19.Rier, S.E., Martin, D.C., Bowman, R.E., Dmowski, W.P. & Becker, J.L. Endometriosis in rhesus monkeys (Macaca mulatta) following chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundam. Appl. Toxicol. 21, 433-441 (1993). 20.Koninckx, P.R., Braet, P., Kennedy, S.H. & Barlow, D.H. Dioxin pollution and endometriosis in Belgium. Hum. Reprod. 9, 1001-1002 (1994). 21.Hadfield, R.M., Mardon, H.J., Barlow, D.H. & Kennedy, S.H. Endometriosis in monozygotic twins. Fertil. Steril. 68, 941-942 (1997). 22.Stefansson, H., et al. Genetic factors contribute to the risk of developing endometriosis. Hum. Reprod. 17, 555-559 (2002). 23.Treloar, S.A., et al. Genomewide linkage study in 1,176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26. Am. J. Hum. Genet. 77, 365-376 (2005). 24.Brown, J., Crawford, T.J., Allen, C., Hopewell, S. & Prentice, A. Nonsteroidal anti-inflammatory drugs for pain in women with endometriosis. Cochrane Database Syst Rev 1, CD004753 (2017). 25.Brown, J., Crawford, T.J., Datta, S. & Prentice, A. Oral contraceptives for pain associated with endometriosis. Cochrane Database Syst Rev 5, CD001019 (2018). 26.Seracchioli, R., et al. Long-term oral contraceptive pills and postoperative pain management after laparoscopic excision of ovarian endometrioma: a randomized controlled trial. Fertil. Steril. 94, 464-471 (2010). 27.Strowitzki, T., Marr, J., Gerlinger, C., Faustmann, T. & Seitz, C. Dienogest is as effective as leuprolide acetate in treating the painful symptoms of endometriosis: a 24-week, randomized, multicentre, open-label trial. Hum. Reprod. 25, 633-641 (2010). 28.Lee, D.Y., Lee, J.Y., Seo, J.W., Yoon, B.K. & Choi, D. Gonadotropin-releasing hormone agonist with add-back treatment is as effective and tolerable as dienogest in preventing pain recurrence after laparoscopic surgery for endometriosis. Arch. Gynecol. Obstet. 294, 1257-1263 (2016). 29.Takaesu, Y., et al. Dienogest compared with gonadotropin-releasing hormone agonist after conservative surgery for endometriosis. J. Obstet. Gynaecol. Res. 42, 1152-1158 (2016). 30.Brown, J., Pan, A. & Hart, R.J. Gonadotrophin-releasing hormone analogues for pain associated with endometriosis. Cochrane Database Syst Rev, CD008475 (2010). 31.Selak, V., Farquhar, C., Prentice, A. & Singla, A. Danazol for pelvic pain associated with endometriosis. Cochrane Database Syst Rev, CD000068 (2007). 32.Melis, G.B., et al. Overview of elagolix for the treatment of endometriosis. Expert Opin. Drug Metab. Toxicol. 12, 581-588 (2016). 33.Taylor, H.S., et al. Treatment of Endometriosis-Associated Pain with Elagolix, an Oral GnRH Antagonist. N. Engl. J. Med. 377, 28-40 (2017). 34.de Ziegler, D., Borghese, B. & Chapron, C. Endometriosis and infertility: pathophysiology and management. Lancet 376, 730-738 (2010). 35.Hughes, E., et al. Ovulation suppression for endometriosis. Cochrane Database Syst Rev, CD000155 (2007). 36.Benschop, L., Farquhar, C., van der Poel, N. & Heineman, M.J. Interventions for women with endometrioma prior to assisted reproductive technology. Cochrane Database Syst Rev, CD008571 (2010). 37.Medeiros, L.R., et al. Laparoscopy versus laparotomy for benign ovarian tumour. Cochrane Database Syst Rev, CD004751 (2009). 38.Hart, R.J., Hickey, M., Maouris, P. & Buckett, W. Excisional surgery versus ablative surgery for ovarian endometriomata. Cochrane Database Syst Rev, CD004992 (2008). 39.Chen, M.L., Lee, K.C., Yang, C.T., Hung, K.H. & Wu, M.H. Simultaneous laparoscopy for endometriotic women undergoing in vitro fertilization. Taiwan. J. Obstet. Gynecol. 51, 66-70 (2012). 40.Soares, S.R., Martinez-Varea, A., Hidalgo-Mora, J.J. & Pellicer, A. Pharmacologic therapies in endometriosis: a systematic review. Fertil. Steril. 98, 529-555 (2012). 41.Nawathe, A., Patwardhan, S., Yates, D., Harrison, G.R. & Khan, K.S. Systematic review of the effects of aromatase inhibitors on pain associated with endometriosis. BJOG 115, 818-822 (2008). 42.Alborzi, S., et al. A comparison of the effect of short-term aromatase inhibitor (letrozole) and GnRH agonist (triptorelin) versus case control on pregnancy rate and symptom and sign recurrence after laparoscopic treatment of endometriosis. Arch. Gynecol. Obstet. 284, 105-110 (2011). 43.Cobellis, L., et al. The treatment with a COX-2 specific inhibitor is effective in the management of pain related to endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 116, 100-102 (2004). 44.Matalliotakis, I.M., et al. Familial aggregation of endometriosis in the Yale Series. Arch. Gynecol. Obstet. 278, 507-511 (2008). 45.Nouri, K., Ott, J., Krupitz, B., Huber, J.C. & Wenzl, R. Family incidence of endometriosis in first-, second-, and third-degree relatives: case-control study. Reprod. Biol. Endocrinol. 8, 85 (2010). 46.Uno, S., et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat. Genet. 42, 707-710 (2010). 47.Painter, J.N., et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat. Genet. 43, 51-54 (2011). 48.Nyholt, D.R., et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat. Genet. 44, 1355-1359 (2012). 49.Rahmioglu, N., et al. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 20, 702-716 (2014). 50.Bulun, S.E. Endometriosis. The New England journal of medicine 360, 268-279 (2009). 51.Tsai, S.J., Wu, M.H., Lin, C.C., Sun, H.S. & Chen, H.M. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J Clin Endocrinol Metab 86, 5765-5773 (2001). 52.Noble, L.S., et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab 82, 600-606 (1997). 53.Noble, L.S., Simpson, E.R., Johns, A. & Bulun, S.E. Aromatase expression in endometriosis. J Clin Endocrinol Metab 81, 174-179 (1996). 54.Brandenberger, A.W., et al. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. Mol Hum Reprod 5, 651-655 (1999). 55.Xue, Q., et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol. Reprod. 77, 681-687 (2007). 56.Bulun, S.E., et al. Role of estrogen receptor-beta in endometriosis. Semin. Reprod. Med. 30, 39-45 (2012). 57.Wing, L.Y., Chuang, P.C., Wu, M.H., Chen, H.M. & Tsai, S.J. Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of estrogen. J Clin Endocrinol Metab 88, 5547-5554 (2003). 58.Pierro, E., et al. Stromal-epithelial interactions modulate estrogen responsiveness in normal human endometrium. Biol. Reprod. 64, 831-838 (2001). 59.Haining, R.E., et al. Epidermal growth factor in human endometrium: proliferative effects in culture and immunocytochemical localization in normal and endometriotic tissues. Hum. Reprod. 6, 1200-1205 (1991). 60.Croze, F., Kennedy, T.G., Schroedter, I.C., Friesen, H.G. & Murphy, L.J. Expression of insulin-like growth factor-I and insulin-like growth factor-binding protein-1 in the rat uterus during decidualization. Endocrinology 127, 1995-2000 (1990). 61.Wu, M.H., Lu, C.W., Chuang, P.C. & Tsai, S.J. Prostaglandin E2: the master of endometriosis? Experimental biology and medicine (Maywood, N.J 235, 668-677 (2010). 62.Sun, H.S., Hsiao, K.Y., Hsu, C.C., Wu, M.H. & Tsai, S.J. Transactivation of steroidogenic acute regulatory protein in human endometriotic stromalcells is mediated by the prostaglandin EP2 receptor. Endocrinology 144, 3934-3942 (2003). 63.Hsu, C.C., Lu, C.W., Huang, B.M., Wu, M.H. & Tsai, S.J. Cyclic adenosine 3',5'-monophosphate response element-binding protein and CCAAT/enhancer-binding protein mediate prostaglandin E2-induced steroidogenic acute regulatory protein expression in endometriotic stromal cells. Am J Pathol 173, 433-441 (2008). 64.Ota, H., Igarashi, S., Sasaki, M. & Tanaka, T. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis. Hum. Reprod. 16, 561-566 (2001). 65.Chishima, F., et al. Increased expression of cyclooxygenase-2 in local lesions of endometriosis patients. Am. J. Reprod. Immunol. 48, 50-56 (2002). 66.Wu, M.H., et al. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. The Journal of clinical endocrinology and metabolism 90, 286-295 (2005). 67.Tamura, M., et al. Up-regulation of cyclooxygenase-2 expression and prostaglandin synthesis in endometrial stromal cells by malignant endometrial epithelial cells. A paracrine effect mediated by prostaglandin E2 and nuclear factor-kappa B. J. Biol. Chem. 277, 26208-26216 (2002). 68.Tamura, M., et al. Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. J Clin Endocrinol Metab 87, 3504-3507 (2002). 69.Wu, M.H., et al. Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Molecular human reproduction 8, 1103-1110 (2002). 70.Chuang, P.C., Sun, H.S., Chen, T.M. & Tsai, S.J. Prostaglandin E2 induces fibroblast growth factor 9 via EP3-dependent protein kinase Cdelta and Elk-1 signaling. Mol. Cell. Biol. 26, 8281-8292 (2006). 71.Laschke, M.W., Elitzsch, A., Scheuer, C., Vollmar, B. & Menger, M.D. Selective cyclo-oxygenase-2 inhibition induces regression of autologous endometrial grafts by down-regulation of vascular endothelial growth factor-mediated angiogenesis and stimulation of caspase-3-dependent apoptosis. Fertil. Steril. 87, 163-171 (2007). 72.Finetti, F., et al. Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1. J. Biol. Chem. 283, 2139-2146 (2008). 73.Chuang, P.C., et al. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. The American journal of pathology 176, 850-860 (2010). 74.Semenza, G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47-71 (2014). 75.Schodel, J., et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207-217 (2011). 76.Manalo, D.J., et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659-669 (2005). 77.Xia, X., et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl. Acad. Sci. U. S. A. 106, 4260-4265 (2009). 78.Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983-1991 (2000). 79.Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303-308 (2015). 80.Maxwell, P.H., et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275 (1999). 81.Lando, D., et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466-1471 (2002). 82.Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858-861 (2002). 83.Ruas, J.L., Poellinger, L. & Pereira, T. Functional analysis of hypoxia-inducible factor-1 alpha-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein. J. Biol. Chem. 277, 38723-38730 (2002). 84.Mahon, P.C., Hirota, K. & Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675-2686 (2001). 85.Wu, M.H., Chen, K.F., Lin, S.C., Lgu, C.W. & Tsai, S.J. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol 170, 590-598 (2007). 86.Wu, M.H., Lin, S.C., Hsiao, K.Y. & Tsai, S.J. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol 225, 390-400 (2011). 87.Lin, S.C., et al. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. The Journal of clinical endocrinology and metabolism 97, E1515-1523 (2012). 88.Hsiao, K.Y., Chang, N., Lin, S.C., Li, Y.H. & Wu, M.H. Inhibition of dual specificity phosphatase-2 by hypoxia promotes interleukin-8-mediated angiogenesis in endometriosis. Hum. Reprod. 29, 2747-2755 (2014). 89.Tan, C.W., et al. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil. Steril. 102, 167-177 e169 (2014). 90.Xu, T.X., Zhao, S.Z., Dong, M. & Yu, X.R. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia. Eur. Rev. Med. Pharmacol. Sci. 20, 399-406 (2016). 91.Hsiao, K.Y., et al. Coordination of AUF1 and miR-148a destabilizes DNA methyltransferase 1 mRNA under hypoxia in endometriosis. Mol Hum Reprod 21, 894-904 (2015). 92.Lee, H.C. & Tsai, S.J. Endocrine targets of hypoxia-inducible factors. J. Endocrinol. 234, R53-R65 (2017). 93.Maybin, J.A., et al. Hypoxia and hypoxia inducible factor-1alpha are required for normal endometrial repair during menstruation. Nat Commun 9, 295 (2018). 94.Hsiao, K.Y., Lin, S.C., Wu, M.H. & Tsai, S.J. Pathological functions of hypoxia in endometriosis. Front Biosci (Elite Ed) 7, 309-321 (2015). 95.Warburg, O. On the origin of cancer cells. Science 123, 309-314 (1956). 96.Young, V.J., et al. Transforming growth factor-beta induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab 99, 3450-3459 (2014). 97.Gudi, R., Bowker-Kinley, M.M., Kedishvili, N.Y., Zhao, Y. & Popov, K.M. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J. Biol. Chem. 270, 28989-28994 (1995). 98.Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. & Popov, K.M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329 ( Pt 1), 191-196 (1998). 99.Kim, J.W., Tchernyshyov, I., Semenza, G.L. & Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185 (2006). 100.Lu, C.W., Lin, S.C., Chen, K.F., Lai, Y.Y. & Tsai, S.J. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem. 283, 28106-28114 (2008). 101.Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L. & Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197 (2006). 102.Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y. & Nielsen, J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28, 28-42 (2015). 103.Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705-713 (2008). 104.Majmundar, A.J., Wong, W.J. & Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309 (2010). 105.Weljie, A.M. & Jirik, F.R. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int. J. Biochem. Cell Biol. 43, 981-989 (2011). 106.Doherty, J.R. & Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123, 3685-3692 (2013). 107.DeBerardinis, R.J., et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A. 104, 19345-19350 (2007). 108.Metallo, C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384 (2011). 109.Wise, D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U. S. A. 108, 19611-19616 (2011). 110.Shyh-Chang, N., et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778-792 (2013). 111.de Moura, M.B., Uppala, R., Zhang, Y., Van Houten, B. & Goetzman, E.S. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells. PLoS One 9, e106028 (2014). 112.Smolkova, K., et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int. J. Biochem. Cell Biol. 43, 950-968 (2011). 113.Wagner, B.A., Venkataraman, S. & Buettner, G.R. The rate of oxygen utilization by cells. Free Radic. Biol. Med. 51, 700-712 (2011). 114.Rodrigues, M.F., et al. Enhanced OXPHOS, glutaminolysis and beta-oxidation constitute the metastatic phenotype of melanoma cells. Biochem. J. 473, 703-715 (2016). 115.Bonnet, S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51 (2007). 116.Choi, Y.W. & Lim, I.K. Sensitization of metformin-cytotoxicity by dichloroacetate via reprogramming glucose metabolism in cancer cells. Cancer Lett. 346, 300-308 (2014). 117.Stander, X.X., Stander, B.A. & Joubert, A.M. Synergistic anticancer potential of dichloroacetate and estradiol analogue exerting their effect via ROS-JNK-Bcl-2-mediated signalling pathways. Cell. Physiol. Biochem. 35, 1499-1526 (2015). 118.Erkkila, K., Aito, H., Aalto, K., Pentikainen, V. & Dunkel, L. Lactate inhibits germ cell apoptosis in the human testis. Mol Hum Reprod 8, 109-117 (2002). 119.Oosterlynck, D.J., Meuleman, C., Waer, M. & Koninckx, P.R. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet. Gynecol. 83, 287-292 (1994). 120.Pizzo, A., et al. Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol. Obstet. Invest. 54, 82-87 (2002). 121.Young, V.J., Brown, J.K., Saunders, P.T. & Horne, A.W. The role of the peritoneum in the pathogenesis of endometriosis. Hum. Reprod. Update 19, 558-569 (2013). 122.Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381-391 (2000). 123.Huang, E.J. & Reichardt, L.F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609-642 (2003). 124.Gartner, A., et al. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling. J. Neurosci. 26, 3496-3504 (2006). 125.Yeo, G.S., et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci. 7, 1187-1189 (2004). 126.Voegeli, G., et al. Neurotrophin Genes and Antidepressant-Worsening Suicidal Ideation: A Prospective Case-Control Study. Int. J. Neuropsychopharmacol. 19(2016). 127.Hamdan, F.F., et al. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. Am. J. Hum. Genet. 101, 664-685 (2017). 128.Yu, X., Liu, L., Cai, B., He, Y. & Wan, X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 99, 543-552 (2008). 129.Yuan, Y., Ye, H.Q. & Ren, Q.C. Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int. J. Oncol. 52, 461-472 (2018). 130.Dewanto, A., et al. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. Reprod. Biol. Endocrinol. 14, 43 (2016). 131.Huang, Y., et al. Expression of tyrosine kinase receptor B in eutopic endometrium of women with adenomyosis. Arch. Gynecol. Obstet. 283, 775-780 (2011). 132.Greaves, E., et al. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol 185, 2286-2297 (2015). 133.Cazorla, M., et al. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J. Clin. Invest. 121, 1846-1857 (2011). 134.Pelch, K.E., Sharpe-Timms, K.L. & Nagel, S.C. Mouse model of surgically-induced endometriosis by auto-transplantation of uterine tissue. J Vis Exp, e3396 (2012). 135.Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736 (2001). 136.Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850-860 (2009). 137.Fujikawa, H., et al. High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J. Gastroenterol. 47, 775-784 (2012). 138.Okamura, K., et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer 78, 100-106 (2012). 139.Jia, S., et al. BDNF mediated TrkB activation contributes to the EMT progression and the poor prognosis in human salivary adenoid cystic carcinoma. Oral Oncol. 51, 64-70 (2015). 140.Ding, S., et al. Role of Brain-Derived Neurotrophic Factor in Endometriosis Pain. Reprod. Sci. 25, 1045-1057 (2018). 141.Barcena de Arellano, M.L., et al. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine 62, 253-261 (2013). 142.Wessels, J.M., Leyland, N.A., Agarwal, S.K. & Foster, W.G. Estrogen induced changes in uterine brain-derived neurotrophic factor and its receptors. Hum. Reprod. 30, 925-936 (2015). 143.Luberg, K., Wong, J., Weickert, C.S. & Timmusk, T. Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J. Neurochem. 113, 952-964 (2010). 144.Fenner, B.M. Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev. 23, 15-24 (2012). 145.Haapasalo, A., et al. Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. J. Biol. Chem. 277, 43160-43167 (2002). 146.Yoshino, O., et al. Possible pathophysiological roles of mitogen-activated protein kinases (MAPKs) in endometriosis. Am. J. Reprod. Immunol. 52, 306-311 (2004). 147.Yoshino, O., et al. FR 167653, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis in a murine model. J. Reprod. Immunol. 72, 85-93 (2006). 148.Banu, S.K., Lee, J., Speights, V.O., Jr., Starzinski-Powitz, A. & Arosh, J.A. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol. Endocrinol. 23, 1291-1305 (2009). 149.Lee, II & Kim, J.J. Influence of AKT on progesterone action in endometrial diseases. Biol. Reprod. 91, 63 (2014). 150.Barra, F., Ferro Desideri, L. & Ferrero, S. Inhibition of PI3K/AKT/mTOR pathway for the treatment of endometriosis. Br. J. Pharmacol. (2018).
|