|
1.Brown, T., R. Cursons, and E. Keys, Amoebae from antarctic soil and water. Applied and Environmental Microbiology, 1982. 44(2): p. 491-493. 2.PAGE, F.C., Re‐Definition of the Genus Acanthamoeba with Descriptions of Three Species. The Journal of protozoology, 1967. 14(4): p. 709-724. 3.Hirukawa, Y., et al., Structure and expression of a cyst specific protein of Acanthamoeba castellanii. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1998. 1398(1): p. 47-56. 4.Dudley, R., E.L. Jarroll, and N.A. Khan, Carbohydrate analysis of Acanthamoeba castellanii. Experimental parasitology, 2009. 122(4): p. 338-343. 5.Corsaro, D., et al., Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov.(genotype T19). Parasitology research, 2015. 114(7): p. 2481-2490. 6.Taher, E.E., et al., Acanthamoeba keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. Journal of infection and public health, 2018. 11(3): p. 377-383. 7.Maciver, S.K., et al., A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. European journal of protistology, 2013. 49(2): p. 217-221. 8.Scheid, P., et al., An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitology research, 2008. 102(5): p. 945-950. 9.Lorenzo-Morales, J., et al., Acanthamoeba keratitis due to genotype T11 in a rigid gas permeable contact lens wearer in Spain. Contact Lens and Anterior Eye, 2011. 34(2): p. 83-86. 10.Grün, A.-L., B. Stemplewitz, and P. Scheid, First report of an Acanthamoeba genotype T13 isolate as etiological agent of a keratitis in humans. Parasitology research, 2014. 113(6): p. 2395-2400. 11.Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clinical microbiology reviews, 2003. 16(2): p. 273-307. 12.Martinez, A.J. and G.S. Visvesvara, Free‐living, amphizoic and opportunistic amebas. Brain Pathology, 1997. 7(1): p. 583-598. 13.Salameh, A., et al. Fatal granulomatous amoebic encephalitis caused by Acanthamoeba in a patient with kidney transplant: A case report. in Open forum infectious diseases. 2015. Oxford University Press. 14.McCulley, J.P., H. Alizadeh, and J.Y. Niederkorn, Acanthamoeba keratitis. Eye & Contact Lens, 1995. 21(1): p. 73-76. 15.Visvesvara, G.S., H. Moura, and F.L. Schuster, Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology & Medical Microbiology, 2007. 50(1): p. 1-26. 16.Broxton, P., P. Woodcock, and P. Gilbert, A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. Journal of Applied Bacteriology, 1983. 54(3): p. 345-353. 17.Auran, J.D., M.B. Starr, and F.A. Jakobiec, Acanthamoeba keratitis. Cornea, 1987. 6(1): p. 2-26. 18.Allen, M.J., A.P. Morby, and G.F. White, Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochemical and biophysical research communications, 2004. 318(2): p. 397-404. 19.Li, M.-L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-446. 20.Fong, C.-F., et al., Clinical characteristics of microbial keratitis in a university hospital in Taiwan. American journal of ophthalmology, 2004. 137(2): p. 329-336. 21.Clarke, D.W. and J.Y. Niederkorn, The pathophysiology of Acanthamoeba keratitis. Trends Parasitol, 2006. 22(4): p. 175-80. 22.Siddiqui, R. and N.A. Khan, Biology and pathogenesis of Acanthamoeba. Parasit Vectors, 2012. 5: p. 6. 23.Khan, N.A., Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev, 2006. 30(4): p. 564-95. 24.Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev, 2003. 16(2): p. 273-307. 25.Wynter-Allison, Z., et al., Acanthamoeba infection as a cause of severe keratitis in a soft contact lens wearer in Jamaica. Am J Trop Med Hyg, 2005. 73(1): p. 92-4. 26.Watson, P., Amoebic infection of the eye. Transactions of the ophthalmological societies of the United Kingdom, 1975. 95(2): p. 204-206. 27.Bacon, A., et al., A review of 72 consecutive cases of Acanthamoeba keratitis, 1984-1992. Eye-Transactions of the OSUK, 1993. 7(6): p. 719-725. 28.Johns, K.J., et al., Herpes simplex masquerade syndrome: Acanthamoeba keratitis. Current eye research, 1987. 6(1): p. 207-212. 29.Mathers, W.D., et al., Outbreak of keratitis presumed to be caused by Acanthamoeba. American journal of ophthalmology, 1996. 121(2): p. 129-142. 30.D'Aversa, G., G.A. Stern, and W.T. Driebe, Diagnosis and successful medical treatment of Acanthamoeba keratitis. Archives of ophthalmology, 1995. 113(9): p. 1120-1123. 31.Cohen, E.J., et al., Diagnosis and management of Acanthamoeba keratitis. American journal of ophthalmology, 1985. 100(3): p. 389-395. 32.Winchester, K., et al., Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy. Cornea, 1995. 14(1): p. 10-17. 33.Mathers, W.D., et al., Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Archives of ophthalmology, 2000. 118(2): p. 178-183. 34.Boggild, A.K., et al., Laboratory diagnosis of amoebic keratitis: comparison of four diagnostic methods for different types of clinical specimens. Journal of clinical microbiology, 2009. 47(5): p. 1314-1318. 35.Kitzmann, A.S., et al., Keratoplasty for treatment of Acanthamoeba keratitis. Ophthalmology, 2009. 116(5): p. 864-869. 36.Larkin, D., S. Kilvington, and J. Dart, Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology, 1992. 99(2): p. 185-191. 37.Werthen, M., et al., Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer. Journal of Antimicrobial Chemotherapy, 2004. 54(4): p. 772-779. 38.Kamaruzzaman, N.F., et al., Bactericidal and anti-biofilm effects of polyhexamethylene Biguanide in models of intracellular and biofilm of Staphylococcus aureus isolated from bovine mastitis. Frontiers in microbiology, 2017. 8: p. 1518. 39.Allen, M.J., G.F. White, and A.P. Morby, The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology, 2006. 152(4): p. 989-1000. 40.Mikić, I.M., et al., Antimicrobial effectiveness of polyhexamethylene biguanide on Enterococcus faecalis, Staphylococcus epidermidis and Candida albicans. Medicinski Glasnik, 2018. 15(2). 41.Walls, G., et al., Successful use of locally applied polyhexamethylene biguanide as an adjunct to the treatment of fungal osteomyelitis. Canadian Journal of Infectious Diseases and Medical Microbiology, 2013. 24(2): p. 109-112. 42.Lim, N., et al., Comparison of polyhexamethylene biguanide and chlorhexidine as monotherapy agents in the treatment of Acanthamoeba keratitis. American journal of ophthalmology, 2008. 145(1): p. 130-135. 43.Huang, F.-C., et al., Characterizing clinical isolates of Acanthamoeba castellanii with high resistance to polyhexamethylene biguanide in Taiwan. Journal of Microbiology, Immunology and Infection, 2017. 50(5): p. 570-577. 44.Varga, J.H., et al., Combined treatment of Acanthamoeba keratitis with propamidine, neomycin, and polyhexamethylene biguanide. American journal of ophthalmology, 1993. 115(4): p. 466-470. 45.Pinna, A., Acanthamoeba and disinfecting contact lens solutions. British Journal of Ophthalmology, 2002. 86(12): p. 1461-1462. 46.CAST, R.J., Development of an Acanthamoeba‐specific Reverse Dot‐Blot and the Discovery of a New Ribotype. Journal of Eukaryotic Microbiology, 2001. 48(6): p. 609-615. 47.Stothard, D.R., et al., The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology, 1998. 45(1): p. 45-54. 48.Schuster, F.L. and G.S. Visvesvara, Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International journal for parasitology, 2004. 34(9): p. 1001-1027. 49.Booton, G., et al., 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. Journal of Clinical Microbiology, 2002. 40(5): p. 1621-1625. 50.De Jonckheere, J., Epidemiological typing of Acanthamoeba strains isolated from keratitis cases in Belgium. Bulletin de la Société belge d'ophtalmologie, 2003. 287: p. 27-36. 51.Khan, N.A. and T.A. Paget, Molecular tools for speciation and epidemiological studies of Acanthamoeba. Current microbiology, 2002. 44(6): p. 444-449. 52.Ledee, D.R., et al., Acanthamoeba griffini. Molecular characterization of a new corneal pathogen. Investigative ophthalmology & visual science, 1996. 37(4): p. 544-550. 53.Walochnik, J., A. Obwaller, and H. Aspöck, Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Applied and Environmental Microbiology, 2000. 66(10): p. 4408-4413. 54.Booton, G.C., et al., 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J Clin Microbiol, 2002. 40(5): p. 1621-5. 55.Caumo, K. and M.B. Rott, Acanthamoeba T3, T4 and T5 in swimming-pool waters from Southern Brazil. Acta tropica, 2011. 117(3): p. 233-235. 56.Li, M.L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-6. 57.Niederkorn, J.Y., et al., The pathogenesis of Acanthamoeba keratitis. Microbes and Infection, 1999. 1(6): p. 437-443. 58.Garate, M., et al., Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. Journal of Biological Chemistry, 2004. 279(28): p. 29849-29856. 59.Lourenssen, S., et al., Entamoeba histolytica infection and secreted proteins proteolytically damage enteric neurons. Infect Immun, 2010. 78(12): p. 5332-40. 60.Ocádiz, R., et al., EhCP112 is an Entamoeba histolytica secreted cysteine protease that may be involved in the parasite‐virulence. Cellular microbiology, 2005. 7(2): p. 221-232. 61.Lidell, M.E., et al., Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proceedings of the National Academy of Sciences, 2006. 103(24): p. 9298-9303. 62.Kucknoor, A.S., V. Mundodi, and J.F. Alderete, The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol, 2007. 9(11): p. 2586-97. 63.Ringqvist, E., et al., Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol, 2008. 159(2): p. 85-91. 64.Vincensini, L., et al., Proteomic analysis identifies novel proteins of the Maurer's clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics, 2005. 4(4): p. 582-93. 65.Silverman, J.M., et al., Proteomic analysis of the secretome of Leishmania donovani. Genome Biol, 2008. 9(2): p. R35. 66.Mattana, A., et al., ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines. Infection and immunity, 2002. 70(8): p. 4424-4432. 67.Lorenzo-Morales, J., et al., RNA interference (RNAi) for the silencing of extracellular serine proteases genes in Acanthamoeba: molecular analysis and effect on pathogenecity. Molecular and biochemical parasitology, 2005. 144(1): p. 10-15. 68.Mattana, A., et al., Acanthamoeba castellanii genotype T4 stimulates the production of interleukin-10 as well as proinflammatory cytokines in THP-1 cells, human peripheral blood mononuclear cells, and human monocyte-derived macrophages. Infection and immunity, 2016. 84(10): p. 2953-2962. 69.Alsam, S., et al., Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood–brain barrier. Journal of Infection, 2005. 51(2): p. 150-156. 70.Sant’ana, V.P., et al., Cytotoxic activity and degradation patterns of structural proteins by corneal isolates of Acanthamoeba spp. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015. 253(1): p. 65-75. 71.Kim, W.-T., et al., Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence. The Korean journal of parasitology, 2006. 44(4): p. 321. 72.Gonçalves, D.d.S., et al., Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells. Virulence, 2018. 9(1): p. 818-836. 73.Clarke, D.W. and J.Y. Niederkorn, The immunobiology of Acanthamoeba keratitis. Microbes and Infection, 2006. 8(5): p. 1400-1405. 74.Mitra, M.M., et al., Characterization of a plasminogen activator produced by Acanthamoeba castellanii. Molecular and biochemical parasitology, 1995. 73(1-2): p. 157-164. 75.Na, B.-K., et al., Degradation of immunoglobulins, protease inhibitors, and interleukin-1 by a secretory proteinase of Acanthamoeba castellanii. The Korean journal of parasitology, 2002. 40(2): p. 93. 76.Pumidonming, W., et al., Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology, 2011. 216(1-2): p. 225-233. 77.Toney, D.M. and F. Marciano-Cabral, Resistance of Acanthamoeba species to complement lysis. The Journal of parasitology, 1998: p. 338-344. 78.Tosi, M.F., Innate immune responses to infection. Journal of Allergy and Clinical Immunology, 2005. 116(2): p. 241-249. 79.Isnard, A., M.T. Shio, and M. Olivier, Impact of Leishmania metalloprotease GP63 on macrophage signaling. Frontiers in cellular and infection microbiology, 2012. 2: p. 72. 80.Rawlings, N.D., A.J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic acids research, 2011. 40(D1): p. D343-D350. 81.Barrett, A.J., J.F. Woessner, and N.D. Rawlings, Handbook of proteolytic enzymes. Vol. 1. 2012: Elsevier. 82.Klein, T. and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases. Amino acids, 2011. 41(2): p. 271-290. 83.Sbardella, D., et al., Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Molecular aspects of medicine, 2012. 33(2): p. 119-208. 84.Rawlings, N.D. and A.J. Barrett, [13] Evolutionary families of metallopeptidases, in Methods in enzymology. 1995, Elsevier. p. 183-228. 85.Gonzales, T. and J. Robert-Baudouy, Bacterial aminopeptidases: properties and functions. FEMS microbiology reviews, 1996. 18(4): p. 319-344. 86.Umezawa, H., Low-molecular-weight enzyme inhibitors of microbial origin. Annual Reviews in Microbiology, 1982. 36(1): p. 75-99. 87.Zheng, J., et al., Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Scientific reports, 2016. 6: p. 34448. 88.Murase, L.S., et al., The role of metalloproteases in Leishmania species infection in the New World: a systematic review. Parasitology, 2018. 145(12): p. 1499-1509. 89.Lee, Y.-R., et al., Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS One, 2015. 10(6): p. e0129884. 90.Lorenzo-Morales, J., et al., RNA interference (RNAi) for the silencing of extracellular serine proteases genes in Acanthamoeba: molecular analysis and effect on pathogenecity. Mol Biochem Parasitol, 2005. 144(1): p. 10-5. 91.Mattana, A., et al., ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines. Infect Immun, 2002. 70(8): p. 4424-32. 92.Huang, J.-M., et al., Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules, 2017. 22(12): p. 2263. 93.Niyyati, M., et al., Axenic cultivation and pathogenic assays of acanthamoeba strains using physical parameters. Iranian journal of parasitology, 2013. 8(2): p. 186. 94.Thomas, V., et al., Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl. Environ. Microbiol., 2006. 72(4): p. 2428-2438. 95.Huang, K.-Y., et al., A proteome reference map of Trichomonas vaginalis. Parasitology research, 2009. 104(4): p. 927-933. 96.Ye, J., et al., WEGO: a web tool for plotting GO annotations. Nucleic acids research, 2006. 34(suppl 2): p. W293-W297. 97.Jain, N.K., et al., A high density CHO-S transient transfection system: Comparison of ExpiCHO and Expi293. Protein Expr Purif, 2017. 134: p. 38-46. 98.Lee, Y.R., et al., Essential Role for an M17 Leucine Aminopeptidase in Encystation of Acanthamoeba castellanii. PLoS One, 2015. 10(6): p. e0129884. 99.Huang, J.-M., et al., Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain. Experimental parasitology, 2016. 166: p. 60-67. 100.Rawlings, N.D., A.J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic acids research, 2012. 40(D1): p. D343-D350. 101.Mirelman, D., Y. Nuchamowitz, and T. Stolarsky, Comparison of use of enzyme-linked immunosorbent assay-based kits and PCR amplification of rRNA genes for simultaneous detection of Entamoeba histolytica and E. dispar. Journal of Clinical Microbiology, 1997. 35(9): p. 2405-2407. 102.Cheun, H.-I., et al., Development of a diagnostic kit to detect Cryptosporidium parvum and Giardia lamblia. Osong public health and research perspectives, 2013. 4(3): p. 146-151. 103.Lagmay, J.P., et al., Cytopathogenicity of Acanthamoeba isolates on rat glial C6 cell line. Southeast Asian J Trop Med Public Health, 1999. 30(4): p. 670-7. 104.Scheid, P. and R. Schwarzenberger, Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitology research, 2012. 111(1): p. 479-485. 105.Behnsen, J., et al., Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infection and immunity, 2010. 78(8): p. 3585-3594. 106.Pumidonming, W., et al., Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology, 2011. 216(1): p. 225-233. 107.Ghendler, Y., R. Arnon, and Z. Fishelson, Schistosoma mansoni: isolation and characterization of Smpi56, a novel serine protease inhibitor. Experimental parasitology, 1994. 78(2): p. 121-131. 108.Lander, N., et al., CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio, 2015. 6(4): p. e01012-15. 109.Shen, B., et al., Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio, 2014. 5(3): p. e01114-14. 110.Moore, J.K. and J.E. Haber, Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Molecular and cellular biology, 1996. 16(5): p. 2164-2173. 111.Rothkamm, K., et al., Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and cellular biology, 2003. 23(16): p. 5706-5715. 112.Shin, S.-E., et al., CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific reports, 2016. 6: p. 27810. 113.Norouzi-Barough, L., et al., CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iranian journal of basic medical sciences, 2018. 21(2): p. 181. 114.Hewitson, J.P., et al., The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory–secretory products. Molecular and biochemical parasitology, 2008. 160(1): p. 8-21. 115.Bennuru, S., et al., Brugia malayi excreted/secreted proteins at the host/parasite interface: stage-and gender-specific proteomic profiling. PLoS Negl Trop Dis, 2009. 3(4): p. e410. 116.Walochnik, J., et al., Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitology research, 2004. 92(4): p. 289-298. 117.Pumidonming, W., et al., Protein profiles and immunoreactivities of Acanthamoeba morphological groups and genotypes. Experimental parasitology, 2014. 145: p. S50-S56. 118.Paroutis, P., N. Touret, and S. Grinstein, The pH of the secretory pathway: measurement, determinants, and regulation. Physiology, 2004. 19(4): p. 207-215. 119.Cuervo, P., et al., Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics, 2009. 73(1): p. 79-92. 120.Siddiqui, R. and N.A. Khan, Biology and pathogenesis of Acanthamoeba. Parasit Vectors, 2012. 5(6): p. 262. 121.Mortazavi, P.N., et al., Possible roles of phospholipase A 2 in the biological activities of Acanthamoeba castellanii (T4 genotype). Protist, 2011. 162(1): p. 168-176. 122.Khan, N.A., Acanthamoeba: biology and increasing importance in human health. FEMS microbiology reviews, 2006. 30(4): p. 564-595. 123.Duguid, I.G.M., et al., Outcome of Acanthamoeba keratitis treated with polyhexamethyl biguanide and propamidine. Ophthalmology, 1997. 104(10): p. 1587-1592. 124.Kilvington, S., et al., Activities of therapeutic agents and myristamidopropyl dimethylamine against Acanthamoeba isolates. Antimicrobial agents and chemotherapy, 2002. 46(6): p. 2007-2009. 125.Huynh, M.-H. and V.B. Carruthers, Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog, 2006. 2(8): p. e84. 126.Klemba, M., I. Gluzman, and D.E. Goldberg, A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. Journal of Biological Chemistry, 2004. 279(41): p. 43000-43007. 127.Sawangsoda, P., et al., Diagnostic values of parasite-specific antibody detections in saliva and urine in comparison with serum in opisthorchiasis. Parasitology international, 2012. 61(1): p. 196-202. 128.ESPINOZA, B., et al., Monoclonal Antibodies against Acetylcholinesterase of Schistosoma monsoni: Production and Characterization. Hybridoma, 1995. 14(6): p. 577-586. 129.Lee, N., et al., Identification of optimal epitopes for Plasmodium falciparum rapid diagnostic tests that target histidine-rich proteins 2 and 3. Journal of clinical microbiology, 2012. 50(4): p. 1397-1405. 130.Bode, W., et al., Structural properties of matrix metalloproteinases. Cellular and Molecular Life Sciences CMLS, 1999. 55(4): p. 639-652. 131.Fricke, B., et al., The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2001. 1537(2): p. 132-146. 132.Abelson, M.B., I.J. Udell, and J.H. Weston, Normal human tear pH by direct measurement. Archives of ophthalmology, 1981. 99(2): p. 301-301. 133.Kellum, J.A., Determinants of blood pH in health and disease. Critical Care, 2000. 4(1): p. 6. 134.Davis, D.A., How human pathogenic fungi sense and adapt to pH: the link to virulence. Current opinion in microbiology, 2009. 12(4): p. 365-370. 135.Rathore, S., et al., Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell death & disease, 2015. 6(7): p. e1803. 136.Igney, F.H. and P.H. Krammer, Death and anti-death: tumour resistance to apoptosis. Nature Reviews Cancer, 2002. 2(4): p. 277. 137.Martinvalet, D., P. Zhu, and J. Lieberman, Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity, 2005. 22(3): p. 355-370. 138.Bienvenu, A.-L., E. Gonzalez-Rey, and S. Picot, Apoptosis induced by parasitic diseases. Parasites & vectors, 2010. 3(1): p. 106. 139.Rooijakkers, S.H. and J.A. van Strijp, Bacterial complement evasion. Molecular immunology, 2007. 44(1-3): p. 23-32. 140.Oda, T., et al., Inactivation of chemotactic activity of C5a by the serratial 56-kilodalton protease. Infection and immunity, 1990. 58(5): p. 1269-1272. 141.Chmouryguina, I., et al., Conservation of the C5a peptidase genes in group A and B streptococci. Infection and immunity, 1996. 64(7): p. 2387-2390. 142.Ghendler, Y., et al., Schistosoma mansoni: evidence for a 28-kDa membrane-anchored protease on schistosomula. Experimental Parasitology, 1996. 83(1): p. 73-82. 143.De Bruijn, M. and G.H. Fey, Human complement component C3: cDNA coding sequence and derived primary structure. Proceedings of the National Academy of Sciences, 1985. 82(3): p. 708-712. 144.DiScipio, R.G., et al., The activation of human complement component C5 by a fluid phase C5 convertase. Journal of Biological Chemistry, 1983. 258(17): p. 10629-10636. 145.Agrahari, G., et al., Streptococcus pyogenes employs strain-dependent mechanisms of C3b inactivation to inhibit phagocytosis and killing of bacteria. Journal of Biological Chemistry, 2016. 291(17): p. 9181-9189. 146.Bora, N.S., et al., Differential expression of the complement regulatory proteins in the human eye. Investigative ophthalmology & visual science, 1993. 34(13): p. 3579-3584. 147.Mondino, B.J., et al., Alternate and classical pathway components of complement in the normal cornea. Archives of Ophthalmology, 1980. 98(2): p. 346-349. 148.Willcox, M., et al., Complement and complement regulatory proteins in human tears. Investigative ophthalmology & visual science, 1997. 38(1): p. 1-8.
|