跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建銘
研究生(外文):Jian-MingHuang
論文名稱:棘阿米巴分泌性蛋白質M28氨肽酶的發現與功能解析及其應用評估
論文名稱(外文):Identification and functional characterization of Acanthamoeba secretory M28 aminopeptidase and its applications
指導教授:林威辰林威辰引用關係
指導教授(外文):Wei-Chen Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:104
中文關鍵詞:棘阿米巴分泌性蛋白質M28氨肽酶抗體診斷試劑致病因子
外文關鍵詞:Acanthamoebathe secreted proteinM28 aminopeptidaseantibody-based diagnostic testvirulence factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
棘阿米巴角膜炎是一種由棘阿米巴原蟲透過角膜損傷引起的感染性角膜病。一般而言,大部分的棘阿米巴角膜炎高風險群的患者為長期配戴隱形眼鏡者。此外,致病性棘阿米巴會造成嚴重的後果,例如: 角膜受損、失明,最後甚至無法治療導致手術摘除患者眼球。然而目前針對棘阿米巴的診斷及治療方式都非具專一性且效果不佳,因此,我們希望找出該病原體具特異性的致病因子,未來能夠在棘阿米巴角膜炎患者或是潛在危險群的診斷或是治療的開發上提供幫助。為改善目前採集檢體需刮取病人角膜的方式,我們寄望從棘阿米巴分泌於外的蛋白質中找出具潛力的目標,提供未來檢驗及治療試劑開發之用。首先以比較蛋白質體學針對棘阿米巴ATCC標準蟲株與本土蟲株的分泌性蛋白質進行分析,從中挑選出各個不同蟲株間具共通性且表現恆定的蛋白質:M28氨肽酶,作為候選目標。根據棘阿米巴與細胞共同培養的結果顯示:棘阿米巴M28氨肽酶能促使宿主細胞走向細胞凋亡並裂解人體補體分子,我們推測此蛋白酶可能會幫助蟲體逃離宿主的免疫攻擊。在檢驗標的方面,我們已成功製備數株M28氨肽酶單株抗體,並使用西方點墨法及酵素免疫分析法對棘阿米巴進行其專一性及敏感度分析,結果顯示目前檢測方式仍有待改善。總而言之,我們成功地找出棘阿米巴分泌性M28氨肽酶並鑑定出其功能,期望未來能以棘阿米巴M28氨肽酶作為標的發展出對棘阿米巴角膜炎更有效的檢驗及治療方式。
Acanthamoeba keratitis (AK) is a serious disease caused by pathogenic Acanthamoeba through wounds of cornea; by and large, most high-risk patients catching AK wear contact lens generally over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequence that it makes the cornea turbid and defective to operate such as enucleation of eyeball. However, little is known about the diagnosis and treatment of AK. Hence, we purpose to provide the diagnostic and treatment procedure to AK patients according the specific virulence factor of Acanthamoeba. To improve diagnostic procedure, we purpose to fine the potential candidate from Acanthamoeba-secreted proteins (Asp) for diagnosis and treatment. First, we analyzed the secreted proteins of ATCC_30010 and clinical isolates to select the abundant consensus protein, Acanthamoeba M28 aminopeptidase (M28AP), as a diagnostic target. According to the result of in vitro co-culture model, we showed that the M28AP of Acanthamoeba can cause host cells apoptosis and degrade human complement protein to avoid parasite from human immunity attack. On diagnosis, the M28AP monoclonal antibodies have been produced to detect the sensitivity and specificity of Acanthamoeba isolates through antibody-based diagnostic tests, such as a western blot and an enzyme-linked immunosorbent assay (ELISA). Based on these results, the diagnostic test has yet to be improved. In conclusion, we have investigated successfully the molecular characteristics of M28AP. In the future, we anticipate M28AP to be the target for diagnosis and treatment of AK.
論文口試合格證明 I
中文摘要 II
Abstract III
致謝 IV
Abbreviation V
Contents VII
Table list XII
Figure list XIII
CHAPTER 1 Introduction 1
1.1 Acanthamoeba 1
1.1.1 Life cycle of Acanthamoeba 1
1.1.2 Genotyping 1
1.2 Acanthamoeba-associated human diseases 2
1.2.1 Granulomatous Amebic Encephalitis (GAE) 2
1.2.2 Acanthamoeba keratitis (AK) 2
1.3 The treatment and diagnosis of Acanthamoeba-associated human disease 3
1.3.1 Diagnosis of AK 3
1.3.2 Treatment of AK 3
1.4 The pathogenesis of Acanthamoeba 4
1.4.1 The virulence factor of Acanthamoeba 4
1.4.2 Acanthamoeba secreted extracellular proteases 6
1.4.3 Acanthamoeba secreted extracellular proteases in innate immunity 6
1.4.4 Acanthamoeba secreted extracellular proteases in complement 7
1.4.5 Aminopeptidases (metalloproteases) 8
CHAPTER 2 Rationale and experimental designs 10
2.1 Rationale 10
2.2 Experimental designs 11
CHAPTER 3 Materials and methods 12
3.1 Culture of Acanthamoeba Protozoa 12
3.1.1 Peptone-Yeast Extract-Glucose (PYG) medium 12
3.1.2 Page's modified Neff's amoeba saline (PAS) buffer 12
3.1.3 Passaging Acanthamoeba Cells 12
3.1.4 Acanthamoeba freezing and thawing 13
3.2 Culture of C6 glioma Rat cell line, A549 human cell line and human primary corneal epithelial cells 13
3.2.1 Dulbecco's Modified Eagle Medium (DMEM) High Glucose medium 14
3.2.2 Phosphate buffered saline (PBS) buffer 14
3.2.3 Passaging cell line 14
3.2.4 Cell freezing and thawing 14
3.3 Isolation of secreted proteins 15
3.3.1 Two-dimensional gel electrophoresis (2-DE) 15
3.3.2 Silver staining of proteins in polyacrylamide gels 16
3.3.3 Protein identification via MALDI TOF/TOF MS 17
3.3.4 Bioinformatic analysis 18
3.4 Cytopathic effect assay (CPE) 18
3.4.1 Giemsa stain 18
3.5 Total DNA extraction 18
3.6 Total RNA Isolation 19
3.7 cDNA Synthesis 20
3.8 Polymerase chain reaction (PCR) 20
3.9 Expression and purification of recombinant protein from E. coli 21
3.9.1 SDS-PAGE and Coomassie Blue staining 22
3.9.2 Western blot analysis 22
3.9.3 Enzyme-linked immunosorbent assay (ELISA) 22
3.10 DNA construction, cell culture and transient transfection 23
3.10.1 Biochemical Properties of recombinant protein M28AP 24
3.10.2 Ni-NTA-Atto Conjugates for recombinant protein M28AP and host cell interaction 24
3.10.3 Annexin V apoptosis assay 25
3.11 Amoebolysis activity of normal human serum (NHS) 25
3.12 Complement protein C3b and iC3b degradation assay 25
3.13 Immunofluorescence assay (IFA) 26
3.14 M28 mutant strain constructed by sgRNA and the Cas9 protein 26
CHAPTER 4 Results 28
4.1 Analysis of secreted protein profiles of non-pathogenic and pathogenic Acanthamoeba 28
4.2 Protein identification by MALDI TOF/TOF MS 28
4.3 Functional analysis of specific proteins using GO terms 29
4.4 Immunoblot and RT-PCR analysis of the secreted proteins 30
4.5 The novel genomic M28 aminopeptidase (M28AP) on Acanthamoeba 30
4.6 Expression and purification of M28AP 31
4.7 The rabbit polyclonal antibody production and detection of M28AP 32
4.8 The mouse polyclonal and monoclonal antibody production and detection of M28AP 32
4.9 The detection of anti-M28AP antibody on different antigens 33
4.10 The virulence of Asp induces cell damage in human primary corneal epithelial cells 33
4.11 The biochemical characterization of M28AP 34
4.12 The virulence of M28AP induces host cell damage 34
4.13 Acanthamoeba secretes protein to prevent human complement-mediated amoebolysis 35
4.14 Acanthamoeba secretes M28AP to degrade human complement C3b and iC3b 36
4.15 Acanthamoeba M28 mutant strains constructed by CRISPR-Cas9 cannot prevent complement-mediated lysis 37
CHAPTER 5 Discussion and future perspective 39
5.1 Secreted protein profiles on non-pathogenic and pathogenic Acanthamoeba strains 39
5.2 Treatment and virulence on the secreted protein of Acanthamoeba 40
5.3 Diagnosis using the M28AP antibody 41
5.4 The biochemical characterization of M28AP 43
5.5 The host cell apoptosis by M28AP 44
5.6 The innate immunity of M28AP 45
5.7 Future perspective 47
CHAPTER 6 References 49
APPENDIX I The DNA sequence of M28AP 90
APPENDIX II The RNA sequence of M28AP 94
APPENDIX III The protein sequence of M28AP 96
APPENDIX IV The pET-21b vector map 97
APPENDIX V The pcDNA 3.1/Zeo(+) vector map 98
APPENDIX VI The recombinant M28AP protein from E.coli identification report 99
APPENDIX VII The recombinant M28AP protein from CHO cell identification report 101
APPENDIX VIII The DNA sequence of M28AP mutant strains 103
APPENDIX IX The journal publication 104
1.Brown, T., R. Cursons, and E. Keys, Amoebae from antarctic soil and water. Applied and Environmental Microbiology, 1982. 44(2): p. 491-493.
2.PAGE, F.C., Re‐Definition of the Genus Acanthamoeba with Descriptions of Three Species. The Journal of protozoology, 1967. 14(4): p. 709-724.
3.Hirukawa, Y., et al., Structure and expression of a cyst specific protein of Acanthamoeba castellanii. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1998. 1398(1): p. 47-56.
4.Dudley, R., E.L. Jarroll, and N.A. Khan, Carbohydrate analysis of Acanthamoeba castellanii. Experimental parasitology, 2009. 122(4): p. 338-343.
5.Corsaro, D., et al., Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov.(genotype T19). Parasitology research, 2015. 114(7): p. 2481-2490.
6.Taher, E.E., et al., Acanthamoeba keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. Journal of infection and public health, 2018. 11(3): p. 377-383.
7.Maciver, S.K., et al., A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. European journal of protistology, 2013. 49(2): p. 217-221.
8.Scheid, P., et al., An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitology research, 2008. 102(5): p. 945-950.
9.Lorenzo-Morales, J., et al., Acanthamoeba keratitis due to genotype T11 in a rigid gas permeable contact lens wearer in Spain. Contact Lens and Anterior Eye, 2011. 34(2): p. 83-86.
10.Grün, A.-L., B. Stemplewitz, and P. Scheid, First report of an Acanthamoeba genotype T13 isolate as etiological agent of a keratitis in humans. Parasitology research, 2014. 113(6): p. 2395-2400.
11.Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clinical microbiology reviews, 2003. 16(2): p. 273-307.
12.Martinez, A.J. and G.S. Visvesvara, Free‐living, amphizoic and opportunistic amebas. Brain Pathology, 1997. 7(1): p. 583-598.
13.Salameh, A., et al. Fatal granulomatous amoebic encephalitis caused by Acanthamoeba in a patient with kidney transplant: A case report. in Open forum infectious diseases. 2015. Oxford University Press.
14.McCulley, J.P., H. Alizadeh, and J.Y. Niederkorn, Acanthamoeba keratitis. Eye & Contact Lens, 1995. 21(1): p. 73-76.
15.Visvesvara, G.S., H. Moura, and F.L. Schuster, Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology & Medical Microbiology, 2007. 50(1): p. 1-26.
16.Broxton, P., P. Woodcock, and P. Gilbert, A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. Journal of Applied Bacteriology, 1983. 54(3): p. 345-353.
17.Auran, J.D., M.B. Starr, and F.A. Jakobiec, Acanthamoeba keratitis. Cornea, 1987. 6(1): p. 2-26.
18.Allen, M.J., A.P. Morby, and G.F. White, Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochemical and biophysical research communications, 2004. 318(2): p. 397-404.
19.Li, M.-L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-446.
20.Fong, C.-F., et al., Clinical characteristics of microbial keratitis in a university hospital in Taiwan. American journal of ophthalmology, 2004. 137(2): p. 329-336.
21.Clarke, D.W. and J.Y. Niederkorn, The pathophysiology of Acanthamoeba keratitis. Trends Parasitol, 2006. 22(4): p. 175-80.
22.Siddiqui, R. and N.A. Khan, Biology and pathogenesis of Acanthamoeba. Parasit Vectors, 2012. 5: p. 6.
23.Khan, N.A., Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev, 2006. 30(4): p. 564-95.
24.Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev, 2003. 16(2): p. 273-307.
25.Wynter-Allison, Z., et al., Acanthamoeba infection as a cause of severe keratitis in a soft contact lens wearer in Jamaica. Am J Trop Med Hyg, 2005. 73(1): p. 92-4.
26.Watson, P., Amoebic infection of the eye. Transactions of the ophthalmological societies of the United Kingdom, 1975. 95(2): p. 204-206.
27.Bacon, A., et al., A review of 72 consecutive cases of Acanthamoeba keratitis, 1984-1992. Eye-Transactions of the OSUK, 1993. 7(6): p. 719-725.
28.Johns, K.J., et al., Herpes simplex masquerade syndrome: Acanthamoeba keratitis. Current eye research, 1987. 6(1): p. 207-212.
29.Mathers, W.D., et al., Outbreak of keratitis presumed to be caused by Acanthamoeba. American journal of ophthalmology, 1996. 121(2): p. 129-142.
30.D'Aversa, G., G.A. Stern, and W.T. Driebe, Diagnosis and successful medical treatment of Acanthamoeba keratitis. Archives of ophthalmology, 1995. 113(9): p. 1120-1123.
31.Cohen, E.J., et al., Diagnosis and management of Acanthamoeba keratitis. American journal of ophthalmology, 1985. 100(3): p. 389-395.
32.Winchester, K., et al., Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy. Cornea, 1995. 14(1): p. 10-17.
33.Mathers, W.D., et al., Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Archives of ophthalmology, 2000. 118(2): p. 178-183.
34.Boggild, A.K., et al., Laboratory diagnosis of amoebic keratitis: comparison of four diagnostic methods for different types of clinical specimens. Journal of clinical microbiology, 2009. 47(5): p. 1314-1318.
35.Kitzmann, A.S., et al., Keratoplasty for treatment of Acanthamoeba keratitis. Ophthalmology, 2009. 116(5): p. 864-869.
36.Larkin, D., S. Kilvington, and J. Dart, Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology, 1992. 99(2): p. 185-191.
37.Werthen, M., et al., Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer. Journal of Antimicrobial Chemotherapy, 2004. 54(4): p. 772-779.
38.Kamaruzzaman, N.F., et al., Bactericidal and anti-biofilm effects of polyhexamethylene Biguanide in models of intracellular and biofilm of Staphylococcus aureus isolated from bovine mastitis. Frontiers in microbiology, 2017. 8: p. 1518.
39.Allen, M.J., G.F. White, and A.P. Morby, The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology, 2006. 152(4): p. 989-1000.
40.Mikić, I.M., et al., Antimicrobial effectiveness of polyhexamethylene biguanide on Enterococcus faecalis, Staphylococcus epidermidis and Candida albicans. Medicinski Glasnik, 2018. 15(2).
41.Walls, G., et al., Successful use of locally applied polyhexamethylene biguanide as an adjunct to the treatment of fungal osteomyelitis. Canadian Journal of Infectious Diseases and Medical Microbiology, 2013. 24(2): p. 109-112.
42.Lim, N., et al., Comparison of polyhexamethylene biguanide and chlorhexidine as monotherapy agents in the treatment of Acanthamoeba keratitis. American journal of ophthalmology, 2008. 145(1): p. 130-135.
43.Huang, F.-C., et al., Characterizing clinical isolates of Acanthamoeba castellanii with high resistance to polyhexamethylene biguanide in Taiwan. Journal of Microbiology, Immunology and Infection, 2017. 50(5): p. 570-577.
44.Varga, J.H., et al., Combined treatment of Acanthamoeba keratitis with propamidine, neomycin, and polyhexamethylene biguanide. American journal of ophthalmology, 1993. 115(4): p. 466-470.
45.Pinna, A., Acanthamoeba and disinfecting contact lens solutions. British Journal of Ophthalmology, 2002. 86(12): p. 1461-1462.
46.CAST, R.J., Development of an Acanthamoeba‐specific Reverse Dot‐Blot and the Discovery of a New Ribotype. Journal of Eukaryotic Microbiology, 2001. 48(6): p. 609-615.
47.Stothard, D.R., et al., The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology, 1998. 45(1): p. 45-54.
48.Schuster, F.L. and G.S. Visvesvara, Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International journal for parasitology, 2004. 34(9): p. 1001-1027.
49.Booton, G., et al., 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. Journal of Clinical Microbiology, 2002. 40(5): p. 1621-1625.
50.De Jonckheere, J., Epidemiological typing of Acanthamoeba strains isolated from keratitis cases in Belgium. Bulletin de la Société belge d'ophtalmologie, 2003. 287: p. 27-36.
51.Khan, N.A. and T.A. Paget, Molecular tools for speciation and epidemiological studies of Acanthamoeba. Current microbiology, 2002. 44(6): p. 444-449.
52.Ledee, D.R., et al., Acanthamoeba griffini. Molecular characterization of a new corneal pathogen. Investigative ophthalmology & visual science, 1996. 37(4): p. 544-550.
53.Walochnik, J., A. Obwaller, and H. Aspöck, Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Applied and Environmental Microbiology, 2000. 66(10): p. 4408-4413.
54.Booton, G.C., et al., 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J Clin Microbiol, 2002. 40(5): p. 1621-5.
55.Caumo, K. and M.B. Rott, Acanthamoeba T3, T4 and T5 in swimming-pool waters from Southern Brazil. Acta tropica, 2011. 117(3): p. 233-235.
56.Li, M.L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-6.
57.Niederkorn, J.Y., et al., The pathogenesis of Acanthamoeba keratitis. Microbes and Infection, 1999. 1(6): p. 437-443.
58.Garate, M., et al., Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. Journal of Biological Chemistry, 2004. 279(28): p. 29849-29856.
59.Lourenssen, S., et al., Entamoeba histolytica infection and secreted proteins proteolytically damage enteric neurons. Infect Immun, 2010. 78(12): p. 5332-40.
60.Ocádiz, R., et al., EhCP112 is an Entamoeba histolytica secreted cysteine protease that may be involved in the parasite‐virulence. Cellular microbiology, 2005. 7(2): p. 221-232.
61.Lidell, M.E., et al., Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proceedings of the National Academy of Sciences, 2006. 103(24): p. 9298-9303.
62.Kucknoor, A.S., V. Mundodi, and J.F. Alderete, The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol, 2007. 9(11): p. 2586-97.
63.Ringqvist, E., et al., Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol, 2008. 159(2): p. 85-91.
64.Vincensini, L., et al., Proteomic analysis identifies novel proteins of the Maurer's clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics, 2005. 4(4): p. 582-93.
65.Silverman, J.M., et al., Proteomic analysis of the secretome of Leishmania donovani. Genome Biol, 2008. 9(2): p. R35.
66.Mattana, A., et al., ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines. Infection and immunity, 2002. 70(8): p. 4424-4432.
67.Lorenzo-Morales, J., et al., RNA interference (RNAi) for the silencing of extracellular serine proteases genes in Acanthamoeba: molecular analysis and effect on pathogenecity. Molecular and biochemical parasitology, 2005. 144(1): p. 10-15.
68.Mattana, A., et al., Acanthamoeba castellanii genotype T4 stimulates the production of interleukin-10 as well as proinflammatory cytokines in THP-1 cells, human peripheral blood mononuclear cells, and human monocyte-derived macrophages. Infection and immunity, 2016. 84(10): p. 2953-2962.
69.Alsam, S., et al., Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood–brain barrier. Journal of Infection, 2005. 51(2): p. 150-156.
70.Sant’ana, V.P., et al., Cytotoxic activity and degradation patterns of structural proteins by corneal isolates of Acanthamoeba spp. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015. 253(1): p. 65-75.
71.Kim, W.-T., et al., Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence. The Korean journal of parasitology, 2006. 44(4): p. 321.
72.Gonçalves, D.d.S., et al., Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells. Virulence, 2018. 9(1): p. 818-836.
73.Clarke, D.W. and J.Y. Niederkorn, The immunobiology of Acanthamoeba keratitis. Microbes and Infection, 2006. 8(5): p. 1400-1405.
74.Mitra, M.M., et al., Characterization of a plasminogen activator produced by Acanthamoeba castellanii. Molecular and biochemical parasitology, 1995. 73(1-2): p. 157-164.
75.Na, B.-K., et al., Degradation of immunoglobulins, protease inhibitors, and interleukin-1 by a secretory proteinase of Acanthamoeba castellanii. The Korean journal of parasitology, 2002. 40(2): p. 93.
76.Pumidonming, W., et al., Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology, 2011. 216(1-2): p. 225-233.
77.Toney, D.M. and F. Marciano-Cabral, Resistance of Acanthamoeba species to complement lysis. The Journal of parasitology, 1998: p. 338-344.
78.Tosi, M.F., Innate immune responses to infection. Journal of Allergy and Clinical Immunology, 2005. 116(2): p. 241-249.
79.Isnard, A., M.T. Shio, and M. Olivier, Impact of Leishmania metalloprotease GP63 on macrophage signaling. Frontiers in cellular and infection microbiology, 2012. 2: p. 72.
80.Rawlings, N.D., A.J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic acids research, 2011. 40(D1): p. D343-D350.
81.Barrett, A.J., J.F. Woessner, and N.D. Rawlings, Handbook of proteolytic enzymes. Vol. 1. 2012: Elsevier.
82.Klein, T. and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases. Amino acids, 2011. 41(2): p. 271-290.
83.Sbardella, D., et al., Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Molecular aspects of medicine, 2012. 33(2): p. 119-208.
84.Rawlings, N.D. and A.J. Barrett, [13] Evolutionary families of metallopeptidases, in Methods in enzymology. 1995, Elsevier. p. 183-228.
85.Gonzales, T. and J. Robert-Baudouy, Bacterial aminopeptidases: properties and functions. FEMS microbiology reviews, 1996. 18(4): p. 319-344.
86.Umezawa, H., Low-molecular-weight enzyme inhibitors of microbial origin. Annual Reviews in Microbiology, 1982. 36(1): p. 75-99.
87.Zheng, J., et al., Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Scientific reports, 2016. 6: p. 34448.
88.Murase, L.S., et al., The role of metalloproteases in Leishmania species infection in the New World: a systematic review. Parasitology, 2018. 145(12): p. 1499-1509.
89.Lee, Y.-R., et al., Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS One, 2015. 10(6): p. e0129884.
90.Lorenzo-Morales, J., et al., RNA interference (RNAi) for the silencing of extracellular serine proteases genes in Acanthamoeba: molecular analysis and effect on pathogenecity. Mol Biochem Parasitol, 2005. 144(1): p. 10-5.
91.Mattana, A., et al., ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines. Infect Immun, 2002. 70(8): p. 4424-32.
92.Huang, J.-M., et al., Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules, 2017. 22(12): p. 2263.
93.Niyyati, M., et al., Axenic cultivation and pathogenic assays of acanthamoeba strains using physical parameters. Iranian journal of parasitology, 2013. 8(2): p. 186.
94.Thomas, V., et al., Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl. Environ. Microbiol., 2006. 72(4): p. 2428-2438.
95.Huang, K.-Y., et al., A proteome reference map of Trichomonas vaginalis. Parasitology research, 2009. 104(4): p. 927-933.
96.Ye, J., et al., WEGO: a web tool for plotting GO annotations. Nucleic acids research, 2006. 34(suppl 2): p. W293-W297.
97.Jain, N.K., et al., A high density CHO-S transient transfection system: Comparison of ExpiCHO and Expi293. Protein Expr Purif, 2017. 134: p. 38-46.
98.Lee, Y.R., et al., Essential Role for an M17 Leucine Aminopeptidase in Encystation of Acanthamoeba castellanii. PLoS One, 2015. 10(6): p. e0129884.
99.Huang, J.-M., et al., Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain. Experimental parasitology, 2016. 166: p. 60-67.
100.Rawlings, N.D., A.J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic acids research, 2012. 40(D1): p. D343-D350.
101.Mirelman, D., Y. Nuchamowitz, and T. Stolarsky, Comparison of use of enzyme-linked immunosorbent assay-based kits and PCR amplification of rRNA genes for simultaneous detection of Entamoeba histolytica and E. dispar. Journal of Clinical Microbiology, 1997. 35(9): p. 2405-2407.
102.Cheun, H.-I., et al., Development of a diagnostic kit to detect Cryptosporidium parvum and Giardia lamblia. Osong public health and research perspectives, 2013. 4(3): p. 146-151.
103.Lagmay, J.P., et al., Cytopathogenicity of Acanthamoeba isolates on rat glial C6 cell line. Southeast Asian J Trop Med Public Health, 1999. 30(4): p. 670-7.
104.Scheid, P. and R. Schwarzenberger, Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitology research, 2012. 111(1): p. 479-485.
105.Behnsen, J., et al., Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infection and immunity, 2010. 78(8): p. 3585-3594.
106.Pumidonming, W., et al., Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology, 2011. 216(1): p. 225-233.
107.Ghendler, Y., R. Arnon, and Z. Fishelson, Schistosoma mansoni: isolation and characterization of Smpi56, a novel serine protease inhibitor. Experimental parasitology, 1994. 78(2): p. 121-131.
108.Lander, N., et al., CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio, 2015. 6(4): p. e01012-15.
109.Shen, B., et al., Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio, 2014. 5(3): p. e01114-14.
110.Moore, J.K. and J.E. Haber, Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Molecular and cellular biology, 1996. 16(5): p. 2164-2173.
111.Rothkamm, K., et al., Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and cellular biology, 2003. 23(16): p. 5706-5715.
112.Shin, S.-E., et al., CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific reports, 2016. 6: p. 27810.
113.Norouzi-Barough, L., et al., CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iranian journal of basic medical sciences, 2018. 21(2): p. 181.
114.Hewitson, J.P., et al., The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory–secretory products. Molecular and biochemical parasitology, 2008. 160(1): p. 8-21.
115.Bennuru, S., et al., Brugia malayi excreted/secreted proteins at the host/parasite interface: stage-and gender-specific proteomic profiling. PLoS Negl Trop Dis, 2009. 3(4): p. e410.
116.Walochnik, J., et al., Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitology research, 2004. 92(4): p. 289-298.
117.Pumidonming, W., et al., Protein profiles and immunoreactivities of Acanthamoeba morphological groups and genotypes. Experimental parasitology, 2014. 145: p. S50-S56.
118.Paroutis, P., N. Touret, and S. Grinstein, The pH of the secretory pathway: measurement, determinants, and regulation. Physiology, 2004. 19(4): p. 207-215.
119.Cuervo, P., et al., Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics, 2009. 73(1): p. 79-92.
120.Siddiqui, R. and N.A. Khan, Biology and pathogenesis of Acanthamoeba. Parasit Vectors, 2012. 5(6): p. 262.
121.Mortazavi, P.N., et al., Possible roles of phospholipase A 2 in the biological activities of Acanthamoeba castellanii (T4 genotype). Protist, 2011. 162(1): p. 168-176.
122.Khan, N.A., Acanthamoeba: biology and increasing importance in human health. FEMS microbiology reviews, 2006. 30(4): p. 564-595.
123.Duguid, I.G.M., et al., Outcome of Acanthamoeba keratitis treated with polyhexamethyl biguanide and propamidine. Ophthalmology, 1997. 104(10): p. 1587-1592.
124.Kilvington, S., et al., Activities of therapeutic agents and myristamidopropyl dimethylamine against Acanthamoeba isolates. Antimicrobial agents and chemotherapy, 2002. 46(6): p. 2007-2009.
125.Huynh, M.-H. and V.B. Carruthers, Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog, 2006. 2(8): p. e84.
126.Klemba, M., I. Gluzman, and D.E. Goldberg, A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. Journal of Biological Chemistry, 2004. 279(41): p. 43000-43007.
127.Sawangsoda, P., et al., Diagnostic values of parasite-specific antibody detections in saliva and urine in comparison with serum in opisthorchiasis. Parasitology international, 2012. 61(1): p. 196-202.
128.ESPINOZA, B., et al., Monoclonal Antibodies against Acetylcholinesterase of Schistosoma monsoni: Production and Characterization. Hybridoma, 1995. 14(6): p. 577-586.
129.Lee, N., et al., Identification of optimal epitopes for Plasmodium falciparum rapid diagnostic tests that target histidine-rich proteins 2 and 3. Journal of clinical microbiology, 2012. 50(4): p. 1397-1405.
130.Bode, W., et al., Structural properties of matrix metalloproteinases. Cellular and Molecular Life Sciences CMLS, 1999. 55(4): p. 639-652.
131.Fricke, B., et al., The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2001. 1537(2): p. 132-146.
132.Abelson, M.B., I.J. Udell, and J.H. Weston, Normal human tear pH by direct measurement. Archives of ophthalmology, 1981. 99(2): p. 301-301.
133.Kellum, J.A., Determinants of blood pH in health and disease. Critical Care, 2000. 4(1): p. 6.
134.Davis, D.A., How human pathogenic fungi sense and adapt to pH: the link to virulence. Current opinion in microbiology, 2009. 12(4): p. 365-370.
135.Rathore, S., et al., Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell death & disease, 2015. 6(7): p. e1803.
136.Igney, F.H. and P.H. Krammer, Death and anti-death: tumour resistance to apoptosis. Nature Reviews Cancer, 2002. 2(4): p. 277.
137.Martinvalet, D., P. Zhu, and J. Lieberman, Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity, 2005. 22(3): p. 355-370.
138.Bienvenu, A.-L., E. Gonzalez-Rey, and S. Picot, Apoptosis induced by parasitic diseases. Parasites & vectors, 2010. 3(1): p. 106.
139.Rooijakkers, S.H. and J.A. van Strijp, Bacterial complement evasion. Molecular immunology, 2007. 44(1-3): p. 23-32.
140.Oda, T., et al., Inactivation of chemotactic activity of C5a by the serratial 56-kilodalton protease. Infection and immunity, 1990. 58(5): p. 1269-1272.
141.Chmouryguina, I., et al., Conservation of the C5a peptidase genes in group A and B streptococci. Infection and immunity, 1996. 64(7): p. 2387-2390.
142.Ghendler, Y., et al., Schistosoma mansoni: evidence for a 28-kDa membrane-anchored protease on schistosomula. Experimental Parasitology, 1996. 83(1): p. 73-82.
143.De Bruijn, M. and G.H. Fey, Human complement component C3: cDNA coding sequence and derived primary structure. Proceedings of the National Academy of Sciences, 1985. 82(3): p. 708-712.
144.DiScipio, R.G., et al., The activation of human complement component C5 by a fluid phase C5 convertase. Journal of Biological Chemistry, 1983. 258(17): p. 10629-10636.
145.Agrahari, G., et al., Streptococcus pyogenes employs strain-dependent mechanisms of C3b inactivation to inhibit phagocytosis and killing of bacteria. Journal of Biological Chemistry, 2016. 291(17): p. 9181-9189.
146.Bora, N.S., et al., Differential expression of the complement regulatory proteins in the human eye. Investigative ophthalmology & visual science, 1993. 34(13): p. 3579-3584.
147.Mondino, B.J., et al., Alternate and classical pathway components of complement in the normal cornea. Archives of Ophthalmology, 1980. 98(2): p. 346-349.
148.Willcox, M., et al., Complement and complement regulatory proteins in human tears. Investigative ophthalmology & visual science, 1997. 38(1): p. 1-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top