|
[1]G. Taylor, “Electrically Driven Jets, Proceedings of the Royal Society of London A, vol. 313, no. 1515, pp. 453-475, 1969. [2]J. Doshi, D. H. Reneker, “Electrospinning Process and Applications of Electronspun Fibers, Journal of Electrostatics, vol. 35, no. 2-3, pp. 151-160, 1995. [3]B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, “Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy, ACS Nano, vol. 4, no.7, pp. 3647-3652, 2010. [4]D. H. Reneker, A. L Yarin, Fong H., S. Koombhongse , “Bending Instability of Electrospinning of Nanofibers, J. Appl. Phys., vol. 87, pp. 31-45, 2000. [5]W. Gilbert, “De magnete, magneticisque corporibus, et de magno magnete tellure. Petrvs Short, pp. 136-145, 1956. [6]C. V. Boys, “On the Production, Properties, and Some Suggested Uses of he Finest Threads, Proceedings of the Physical Society of London, vol. 9, no. 1, pp. 8-17, 1887. [7]J. F. Cooley, “Apparatus for Electrically Dispersing Fluids, US Patent Specification 692631, 1902. [8]W. J. Morton, “Method of Dispersing Fluids, US Patent Specification 705691, 1902. [9]A. Formhals, “Process and Apparatus for Preparing Artificial Threads, US Patent Specification 1975504, 1934. [10]A. Formhals, “Production of Artificial Fibers, US Patent Specification 2077373, 1937. [11]A. Formhals, “Artificial Fiber Construction, US Patent Specification, 2109333, 1938. [12]A. Formhals, “Method and Apparatus for the Production of Fibers, US Patent Specification 2116942, 1938. [13]A. Formhals, “Method of Producing Artificial Fibers, US Patent Specification 2158415, 1939. [14]A. Formhals, “Method and Apparatus for the Production of Artificial Fibers, US Patent Specification 2158416, 1939. [15]A. Formhals, “Artificial Thread and Method of Producing Same, US Patent Specification 2187306, 1940. [16]A. Formhals, “Production of Artificial Fibers from Fiber Forming Liquids, US Patent Specification 2323025, 1943. [17]G. Taylor, “Disintegration of water drops in an electric field, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 280, no. 1382. pp. 383-397, 1964. [18]G. M. H Meesters, P. H. W Vercoulen, J. C. M Marijnissen, B. Scarlett, “Generation of Micron-Sized Droplets from the Taylor Cone, J. Aerosol Sci, vol. 23, no.1, pp. 37-49, 1992. [19]D. H. Reneker, I. Chun, “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning, Nanotechnology, vol. 7, no. 3, pp. 216-223, 1996. [20]Nick Tucker, J. Stanger Jonathan, MSc, P. Staiger Mark, Hussam Razzaq, Kathleen Hofman, “The History of the Science and Technology of Electrospinning from 1600 to 1995, Journal of Engineered Fibers and Fabrics, Special Issue, vol. 7, pp. 63-73, 2012. [21]D. Numakura, “Advanced Screen Printing Practical Approaches for Printable & Flexible Electronics, 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference, Taipei, pp. 205-208, 2008. [22]Li D., G. Ouyang, J. T. McCann, Y. Xia, “Collecting Electrospun Nanofibers with Patterned Electrodes, Nano Lett, vol. 5, no. 5, pp. 913-918, 2005. [23]A. Theron, E. Zussmanl, A.L. Yarin, “An Introduction to Electrospinning and Nanofibers, Nanotechnology, vol. 12, pp. 384-390, 2001. [24]Sun Daoheng, Chang Chieh, Li Sha, Lin Liwei, “Near-Field Elecrtospinning, Nano Letters, vol. 6, no. 4, pp. 839-842, 2006. [25]Maryam Yousefzadeh, Masoud Latifi, Mohammad Amani-Tehran, Wee-Eong Teo, and Seeram Ramakrishna, “A Note on the 3D Structural Design of Electrospun Nanofibers, Journal of Engineered Fibers and Fabrics, vol. 7, no. 2, pp. 17-23, 2012. [26]X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano letters, vol. 10, no. 6, pp. 2133-2137, 2010. [27]C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano letters, vol. 10, no. 2, pp. 726-731, 2010. [28]C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, C. H Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 334-341, 2008. [29]Yu, H., Huang, T., Lu, M., Mao, M., Zhang, Q., Wang, H. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity, Nanotechnology, vol. 24, no. 40, pp. 401-405, 2013. [30]J. Chang, L. Lin, Large array electrospun PVDF nanogenerators on a flexible substrate, in proc. 2011 16th International, IEEE, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747-750, 2011. [31]L. Shi, Y. Zhang, W. Dong, “Research on the relationship between the curvature and the sensitivity of curved PVDF sensor, In Ninth International Symposium on Precision Engineering Measurement and Instrumentation, International Society for Optics and Photonics, Vol. 9446, pp. 9446, 2015. [32]Y. K. Fuh, B. S. Wang, C. Y. Tsai, “Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Scientific reports, vol.7, no. 1, pp. 59-67, 2017. [33]B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, “Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy, ACS nano, vol. 4, no. 7, pp. 3647-3652, 2010. [34]A. Kimoto, N. Sugitani, S. Fujisaki, “A multifunctional tactile sensor based on PVDF films for identification of materials, IEEE Sensors Journal, vol. 10, no. 9, pp. 1508-1513, 2010. [35]Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, C. Xu, “A flexible piezoelectric force sensor based on PVDF fabrics, Smart Materials and Structures, vol. 20, no. 4, pp. 045009, 2011. [36]C. Li, S. Min, L. Yiyang, H. Jinchuan, L. Haohua, “Research on gait measuring method based on PVDF piezoelectric sensors, In proc. 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, IEEE, pp. 284-287, 2013. [37]S. H. Park, H. B. Lee, S. M. Yeon, J. Park, Lee, “Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates, ACS applied materials and interfaces, vol. 8, no. 37, pp. 24773-24781, 2016. [38]E. Ghafari, N. Lu, “Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications, Composites Part B: Engineering, vol. 160, pp. 1-9, 2019. [39]H. Gu, Y. Zhao, M. L. Wang, “A wireless smart PVDF sensor for structural health monitoring, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, vol. 12, no. 3‐4, pp. 329-343, 2005. [40]B. Yang, K. S. Yun, “Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement, Sensors and Actuators A: Physical, vol. 188, pp. 427-433, 2012. [41]Van Volkinburg, Kyle, Gregory Washington, “Development of a wearable controller for gesture-recognition-based applications using polyvinylidene fluoride, IEEE transactions on biomedical circuits and systems, vol. 11, no. 4, pp. 900-909, 2017. [42]Y. K. Fuh, S. C. Lee, C. Y. Tsai, “Application of Highly flexible self-powered sensors via sequentially deposited piezoelectric fibers on printed circuit board for wearable electronics devices, Sensors and Actuators A: Physical, vol. 268, pp. 148-154, 2017. [43]W. Dong, L. Xiao, W. Hu, C. Zhu, Y. Huang, Z. Yin, “Wearable human–machine interface based on PVDF piezoelectric sensor, Transactions of the Institute of Measurement and Control, vol. 39, no. 4, pp. 398-403, 2017. [44]P. Neto, J. N. Pires, A. P. Moreira, “Accelerometer-based control of an industrial robotic arm, In RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, IEEE, pp. 1192-1197, 2009. [45]H. Khan, A. Razmjou, M. Ebrahimi Warkiani, A. Kottapalli, M. Asadnia, “Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring, Sensors, vol. 18, no. 2, pp. 418, 2018. [46]W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, H. Zhang, “Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures, Nano Energy, vol. 55, pp. 516-525, 2019. [47]I. D. Johnston, D. K. McCluskey, C. K. L. Tan, M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, Journal of Micromechanics and Microengineering, vol. 24, pp. 17-33, 2014.
|