跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳毅燦
研究生(外文):Yi-TsanChen
論文名稱:反算設計問題於雪花形鰭片最佳形狀之研究
論文名稱(外文):Inverse Design Problems in Estimating the Optimal Shapes of the Snowflake-Shaped Fins
指導教授:黃正弘黃正弘引用關係
指導教授(外文):Cheng-Hung Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:59
中文關鍵詞:反算設計問題拉凡格氏法最佳化設計
外文關鍵詞:Inverse design problemLevenberg-Marquardt methodOptimization design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在於應用拉凡格氏法(Levenberg-Marquardt Method)搭配套裝熱流模擬軟體CFD-ACE+與程式語言Fortran,探討三維反算問題於雪花形散熱鰭片(snowflake-shaped fins)外形最佳化設計之研究,期望在不改變鰭片體積的情況下,獲得最低的無因次最高熱阻(dimensionless maximum thermal resistance)。
雪花形散熱鰭片可藉由將舵形散熱鰭片(helm-shaped fin)之扇形突出區域以固定長度L沿著中線左右向外分開獲得。向外分開後鰭片上將形成孔洞,進而達到降低溫度的功效。本論文之目標為預測出雪花形鰭片的最佳設計參數,並以文獻[23]作為基礎,探討雪花形散熱鰭片相較於舵形散熱鰭片(helm-shaped fin)之優劣,同時針對單一熱源與多熱源兩種案例進行反算,其中多熱源案例又包括雙熱源問題與四熱源問題,並將結果數據詳細表列及繪製成圖。結果指出,單熱源問題之無因次最高熱阻的下降百分比隨著鰭片厚度 增加呈現上升的趨勢,最高可達11.553%。多熱源問題之無因次最高熱阻的下降百分比隨著對流熱傳係數(convective heat transfer parameter)a減少呈現上升的趨勢,在雙熱源問題中最高可達14.358%;在四熱源問題中最高可達17.631%。
A three-dimensional shape design problem is considered in this thesis to determine the optimal snowflake-shaped fins (SSF), based on the minimization of maximum domain temperature of fin under fixed fin volume constraint. The Levenberg-Marquardt method (LMM) coupled with software package CFD-ACE+ are used as the design tools. The SSF can be obtained by modifying the helm-shaped fins (HSF), the fine surfaces of HSF can be increased by splitting central part of the extended bodies from the center line outward and perforations can therefore be formed, and thus the maximum temperature of the fin can be reduced. The objective of this work is to estimate the optimal design variables of SSF such that they can minimize the maximum fin temperature. The validity of CFD-ACE+ is first performed to verify the accuracy of the numerical solutions, and two categories of test cases. i.e. single internal heat source (IHS) problems and multiple IHS problems, in determining the optimal SSF are examined in the present study. The estimated optimal SSF are then compared with the HSF given by Feng et al [23]. Results indicate that the optimal SSF can achieve lower maximum fin temperature than HSF.
摘要 I
英文延伸摘要 II
致謝 VI
目錄 VII
表目錄 IX
圖目錄 X
符號說明 XII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 研究方法 2
1-3 文獻回顧 5
第二章 單熱源雪花形鰭片之最佳形狀設計 9
2-1 直接解問題 9
2-2 鰭片設計問題:獲得最小熱源中心溫度(或熱阻) 12
2-3 拉凡格氏法之極小化過程 14
2-4 數值計算流程 16
2-5 結果與討論 17
第三章 多熱源雪花形鰭片之最佳形狀設計 31
3-1 直接解問題 31
3-2 鰭片設計問題:獲得最小熱源中心溫度(或熱阻) 34
3-3 拉凡格氏法之極小化過程 35
3-4 數值計算流程 38
3-5 結果與討論 39
第四章 結論 55
參考文獻 57
[1] CFD-ACE+ user’s manual, ESI-CFD Inc. 2005.
[2] J. P. van Doormal, & G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical heat transfer, 7 (1984) 147–163.
[3] D. M. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11 (1963) 431-441.
[4] C. H. Huang, & J. H. Hsiao, An Inverse Design Problem in Determining the Optimum Shape of Spine and Longitudinal Fins, Numerical Heat Transfer, Part A, 43 (2003) 155-177.
[5] A. Aziz, & M. N. Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Convers. Manage. 52 (2011) 2876–2882.
[6] M. Lindstedt, K. Lampio, & R. Karvinen, Optimal shapes of straight fins and finned heat sinks, Trans. ASME, J. Heat Transf. 137 (2015) 061006.
[7] C. H. Huang, & H. H. Wu, A Fin Design Problem in Determining the Optimum Shape of Non-Fourier Spine and Longitudinal Fins, CMC, Computers, Materials and Continua, 5, (2007) 197–211.
[8] A. Bejan, & M. Almogbel, Constructal T-shaped fins, Int. J. Heat Mass Transf. 43 (2000) 2101–2115.
[9] G. Lorenzini, & S. Moretti, A CFD application to optimize T-shaped fins: comparisons to the constructal theory’s results, ASME Trans. J. Electron. Packaging 129 (2007) 324–327.
[10] D. Bhanja, & B. Kundu, Radiation effect on optimum design analysis of a constructal T-shaped fin with variable thermal conductivity, Heat Mass Transf. 48 (2012) 109–122.
[11] G. Lorenzini, M. Medici, & L.A.O. Rocha, Convective analysis of constructal Tshaped fins, J. Eng. Thermophys. 23 (2014) 98–104.
[12] S.A. Hazarika, D. Bhanja, S. Nath, & B. Kundu, Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer, Energy 84 (2015) 303–316.
[13] G. Lorenzini, & S. Moretti, Numerical analysis on heat removal from Y-shaped fins: efficiency and volume occupied for a new approach to performance optimization, Int. J. Therm. Sci. 46 (2007) 573–579.
[14] Z. H. Xie, L. G. Chen, & F. R. Sun, Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective, Sci. China: Technol. Sci. 53 (2010) 2756–2764.
[15] M. R. Hajmohammadi, S. Poozesh, & R. Hosseini, Radiation effect on constructal design analysis of a T-Y-shaped assembly of fins, J. Therm. Sci. Technol. 7 (2012) 677–692.
[16] G. Lorenzini, & L.A.O. Rocha, Constructal design of T-Y assembly of fins for an optimized heat removal, Int. J. Heat Mass Transf. 52 (2009) 1458–1463.
[17] M. Almogbel, & A. Bejan, Cylindrical of pin fins, Int. J. Heat Mass Transf. 43 (2000) 4285–4297.
[18] T. Bello-Ochende, J. P. Meyer, & A. Bejan, Constructal multi-scale pin-fins, Int. J. Heat Mass Transf. 53 (2010) 2773–2779.
[19] M. R. Hajmohammadi, S. Poozesh, S. S. Nourazar, A. Campo, & A. H. Manesh, Optimal architecture of heat generating pieces in a fin, J. Mech. Sci. Technol. 27 (2013) 1143–1149.
[20] S. W. Gong, L. G. Chen, H. J. Feng, Z. H. Xie, & F. R. Sun, Constructal optimization of cylindrical heat sources surrounded with a fin based on minimization of hot spot temperature, Int. Commun. Heat Mass Transf. 68 (2015) 1–7.
[21] B. Kundu, K. S. Lee, & A. Campo, An ease of analysis for optimum design of an annular step fin, Int. J. Heat Mass Transf. 85 (2015) 221–227.
[22] C. H. Huang, & Y. L. Chung, An Inverse Problem in Determining the Optimum Shapes for Partially Wet Annular Fins Based on Efficiency Maximization, International Journal of Heat and Mass Transfer, 90 (2015) 364–375.
[23] H. J. Feng, L. G, Chen, Z. H. Xie, & F. R. Sun, Constructal design for helm-shaped fin with internal heat sources, International Journal of Heat and Mass Transfer, 110 (2017) 1–6.
[24] S.B. Chin, J.J. Foo, Y.L. Lai, T.K.K. Yong, Forced convective heat transfer enhancement with perforated pin fins, Heat Mass Transfer 49 (2013) 1447–1458.
[25] C. H. Huang, Y. C. Liu, & H. C. Ay, The Design of Optimum Perforation Diameters for Pin Fin Array for Heat Transfer Enhancement, International Journal of Heat and Mass Transfer, 84 (2015) 752–765.
[26] C. H. Huang, & M. H. Chen, An Estimation of the Optimum Shape and Perforation Diameters for Pin Fin Arrays, International Journal of Heat and Mass Transfer, 131 (2019) 72–84, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top