|
1Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446 (2018). 2Zappa, C. & Mousa, S. A. Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288 (2016). 3Malhotra, J., Malvezzi, M., Negri, E., La Vecchia, C. & Boffetta, P. Risk factors for lung cancer worldwide. Eur Respir J 48, 889-902 (2016). 4Wu, R.-T., Chiang, H.-C., Fu, W.-C., Chien, K.-Y., Chung, Y.-M. & Horng, L.-Y. Formosanin-C, an immunomodulator with antitumor activity. Int J Immunopharmacol. 12, 777-786 (1990). 5Lee, J. C., Su, C. L., Chen, L. L. & Won, S. J. Formosanin C‐induced apoptosis requires activation of caspase‐2 and change of mitochondrial membrane potential. Cancer Sci. 100, 503-513 (2009). 6Xiao, X., Zou, J., Bui-Nguyen, T. M., Bai, P., Gao, L., Liu, J., Liu, S., Xiao, J., Chen, X. & Zhang, X. Paris saponin II of Rhizoma Paridis–a novel inducer of apoptosis in human ovarian cancer cells. Biosci Trends 6, 201-211 (2012). 7Zhang, L., Man, S., Wang, Y., Liu, J., Liu, Z., Yu, P. & Gao, W. Paris Saponin II induced apoptosis via activation of autophagy in human lung cancer cells. Chem.-Biol. Interact. 253, 125-133 (2016). 8Man, S., Gao, W., Zhang, Y., Liu, Z., Yan, L., Huang, L. & Liu, C. Formosanin C-inhibited pulmonary metastasis through repression of matrix metalloproteinases on mouse lung adenocarcinoma. Cancer Biol Ther 11, 592-598 (2011). 9Wu, S. Y., Lan, S. H., Wu, S. R., Chiu, Y. C., Lin, X. Z., Su, I. J., Tsai, T. F., Yen, C. J., Lu, T. H., Liang, F. W., Li, C. Y., Su, H. J., Su, C. L. & Liu, H. S. Hepatocellular carcinoma–related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology (Baltimore, Md.) 68, 141-154, doi:10.1002/hep.29781 (2018). 10Wu, S. Y., Lan, S. H. & Liu, H. S. Degradative autophagy selectively regulates CCND1 (cyclin D1) and MIR224, two oncogenic factors involved in hepatocellular carcinoma tumorigenesis. Autophagy 15, 729-730, doi:10.1080/15548627.2019.1569918 (2019). 11Nazarko, T. Y. Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy 13, 991-994, doi:10.1080/15548627.2017.1291480 (2017). 12Eskelinen, E.-L. Autophagy: supporting cellular and organismal homeostasis by self-eating. Int. J. Biochem. Cell Biol (2019). 13Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat Rev Cancer 7, 961 (2007). 14Wu, Y.-W. & Li, F. Bacterial interaction with host autophagy. Virulence 10, 352-362 (2019). 15Gatica, D. & Klionsky, D. J. Towards understanding mRNA-binding protein specificity: lessons from post-transcriptional regulation of ATG mRNA during nitrogen starvation-induced autophagy. Curr Genet, 1-3 (2019). 16Rodríguez-Vargas, J. M., Oliver-Pozo, F. J. & Dantzer, F. PARP1 and Poly (ADP-ribosyl) ation Signaling during Autophagy in Response to Nutrient Deprivation. Oxid Med Cell Longev. 2019 (2019). 17Izumi, M., Nakamura, S. & Li, N. Autophagic Turnover of Chloroplasts: Its Roles and Regulatory Mechanisms in Response to Sugar Starvation. Front Plant Sci. 10 (2019). 18Kim, C., Park, J. M., Song, Y., Kim, S. & Moon, J. HIF1α‐mediated AIMP3 suppression delays stem cell aging via the induction of autophagy. Aging cell 18, e12909 (2019). 19Wang, L., Howell, M., Sparks-Wallace, A., Hawkins, C., Nicksic, C., Kohne, C., Hall, K., Moorman, J., Yao, Z. Q. & Ning, S. p62-mediated Selective Autophagy Endows Virus-transformed Cells with Insusceptibility to DNA Damage under Oxidative Stress. bioRxiv, 502823 (2019). 20Chakraborty, D., Felzen, V., Hiebel, C., Stürner, E., Perumal, N., Manicam, C., Sehn, E., Grus, F., Wolfrum, U. & Behl, C. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. bioRxiv, 580977 (2019). 21Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19, 349-364, doi:10.1038/s41580-018-0003-4 (2018). 22New, J. & Thomas, S. M. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy, 1-12 (2019). 23Ponpuak, M., Mandell, M. A., Kimura, T., Chauhan, S., Cleyrat, C. & Deretic, V. Secretory autophagy. Curr Opin Cell Biol 35, 106-116, doi:10.1016/j.ceb.2015.04.016 (2015). 24Delorme-Axford, E. & Klionsky, D. J. Secretory autophagy holds the key to lysozyme secretion during bacterial infection of the intestine. Autophagy 14, 365-367, doi:10.1080/15548627.2017.1401425 (2018). 25Münch, C. & Dikic, I. Hitchhiking on selective autophagy. Nat Cell Biol. 20, 122-124, doi:10.1038/s41556-018-0036-0 (2018). 26Lan, S. H., Wu, S. Y., Zuchini, R., Lin, X. Z., Su, I. J., Tsai, T. F., Lin, Y. J., Wu, C. T. & Liu, H. S. Autophagy-preferential degradation of MIR224 participates in hepatocellular carcinoma tumorigenesis. Autophagy 10, 1687-1689, doi:10.4161/auto.29959 (2014). 27Chu, C. T. Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol Dis 122, 23-34, doi:10.1016/j.nbd.2018.07.015 (2019). 28Deretic, V., Jiang, S. & Dupont, N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 22, 397-406, doi:10.1016/j.tcb.2012.04.008 (2012). 29Jiang, S., Dupont, N., Castillo, E. F. & Deretic, V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. Journal of innate immunity 5, 471-479, doi:10.1159/000346707 (2013). 30Zahoor, M. & Farhan, H. Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases. Int Rev Cell Mol Biol 337, 153-184, doi:10.1016/bs.ircmb.2017.12.004 (2018). 31Udristioiu, A. & Nica-Badea, D. Autophagy dysfunctions associated with cancer cells and their therapeutic implications. Biomed Pharmacother. 115, 108892 (2019). 32Amaravadi, R., Kimmelman, A. C. & White, E. Recent insights into the function of autophagy in cancer. Genes Dev 30, 1913-1930, doi:10.1101/gad.287524.116 (2016). 33White, E. The role for autophagy in cancer. J Clin Invest. 125, 42-46 (2015). 34Folkerts, H., Hilgendorf, S., Vellenga, E., Bremer, E. & Wiersma, V. R. The multifaceted role of autophagy in cancer and the microenvironment. MED RES REV (2018). 35Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 100, 15077-15082 (2003). 36Ning, L., Guo-Chun, Z., Sheng-Li, A., Xue-Rui, L., Kun, W., Jian, Z., Chong-Yang, R., Ling-Zhu, W. & Hai-Tong, L. Inhibition of autophagy induced by PTEN loss promotes intrinsic breast cancer resistance to trastuzumab therapy. Tumour Biol 37, 5445-5454, doi:10.1007/s13277-015-4392-0 (2016). 37Lan, S. H., Wu, S. Y., Zuchini, R., Lin, X. Z., Su, I. J., Tsai, T. F., Lin, Y. J., Wu, C. T. & Liu, H. S. Autophagy suppresses tumorigenesis of hepatitis B virus‐associated hepatocellular carcinoma through degradation of microRNA‐224. Hepatology (Baltimore, Md.) 59, 505-517 (2014). 38Guo, J. Y., Chen, H.-Y., Mathew, R., Fan, J., Strohecker, A. M., Karsli-Uzunbas, G., Kamphorst, J. J., Chen, G., Lemmons, J. M. & Karantza, V. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. GENE DEV (2011). 39Lock, R., Roy, S., Kenific, C. M., Su, J. S., Salas, E., Ronen, S. M. & Debnath, J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 22, 165-178 (2011). 40Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J. M. & Dell'Antonio, G. Pancreatic cancers require autophagy for tumor growth. GENE DEV (2011). 41Mortensen, M., Soilleux, E. J., Djordjevic, G., Tripp, R., Lutteropp, M., Sadighi-Akha, E., Stranks, A. J., Glanville, J., Knight, S. & Jacobsen, S.-E. W. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 208, 455-467 (2011). 42Mowers, E. E., Sharifi, M. N. & Macleod, K. F. Autophagy in cancer metastasis. Oncogene 36, 1619 (2017). 43Dyczynski, M., Yu, Y., Otrocka, M., Parpal, S., Braga, T., Henley, A. B., Zazzi, H., Lerner, M., Wennerberg, K., Viklund, J., Martinsson, J., Grander, D., De Milito, A. & Pokrovskaja Tamm, K. Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett 435, 32-43, doi:10.1016/j.canlet.2018.07.028 (2018). 44Fu, Y., Hong, L., Xu, J., Zhong, G., Gu, Q., Gu, Q., Guan, Y., Zheng, X., Dai, Q., Luo, X., Liu, C., Huang, Z., Yin, X.-M., Liu, P. & Li, M. Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy 15, 295-311, doi:10.1080/15548627.2018.1517073 (2019). 45Li, X., Xu, H.-l., Liu, Y.-x., An, N., Zhao, S. & Bao, J.-k. Autophagy modulation as a target for anticancer drug discovery. Acta Pharmacol. Sin. 34, 612 (2013). 46Liu, Z., He, K., Ma, Q., Yu, Q., Liu, C., Ndege, I., Wang, X. & Yu, Z. Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLOS ONE 12, e0177694, doi:10.1371/journal.pone.0177694 (2017). 47Chude, C. I. & Amaravadi, R. K. Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. Int J Mol Sci 18, 1279, doi:10.3390/ijms18061279 (2017). 48Fulda, S. Autophagy in Cancer Therapy. Front Oncol. 7, 128-128, doi:10.3389/fonc.2017.00128 (2017). 49Chang, Y. L., Liu, S. T., Wang, Y. W., Lin, W. S. & Huang, S. M. Amiodarone promotes cancer cell death through elevated truncated SRSF3 and downregulation of miR-224. Oncotarget 9, 13390-13406, doi:10.18632/oncotarget.24385 (2018). 50Liang, Q. P., Xu, T. Q., Liu, B. L., Lei, X. P., Hambrook, J. R., Zhang, D. M. & Zhou, G. X. Sasanquasaponin ΙΙΙ from Schima crenata Korth induces autophagy through Akt/mTOR/p70S6K pathway and promotes apoptosis in human melanoma A375 cells. Phytomedicine 58, doi:10.1016/j.phymed.2018.11.029 (2019). 51Sun, J., Feng, Y., Wang, Y., Ji, Q., Cai, G., Shi, L., Wang, Y., Huang, Y., Zhang, J. & Li, Q. α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation. Int J Oncol. 54, 1601-1612, doi:10.3892/ijo.2019.4757 (2019). 52Wang, L., Yun, L., Wang, X., Sha, L., Wang, L., Sui, Y. & Zhang, H. Endoplasmic reticulum stress triggered by Soyasapogenol B promotes apoptosis and autophagy in colorectal cancer. Life Sci. 218, 16-24, doi:10.1016/j.lfs.2018.12.023 (2019). 53Li, B., Wu, G. L., Dai, W., Wang, G., Su, H. Y., Shen, X. P., Zhan, R., Xie, J. M., Wang, Z., Qin, Z. H., Gao, Q. G. & Shen, G. H. Aescin-induced reactive oxygen species play a pro-survival role in human cancer cells via ATM/AMPK/ULK1-mediated autophagy. Acta Pharmacol. Sin. 39, 1874-1884, doi:10.1038/s41401-018-0047-1 (2018). 54Chung, Y., Jeong, S., Choi, H. S., Ro, S., Lee, J. S. & Park, J. K. Upregulation of autophagy by Ginsenoside Rg2 in MCF-7 cells. ANIM CELLS SYST. 22, 382-389, doi:10.1080/19768354.2018.1545696 (2018). 55Yoo, H. S., Kim, J. M., Jo, E., Cho, C. K., Lee, S. Y., Kang, H. S., Lee, M. G., Yang, P. Y. & Jang, I. S. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A549 human lung cancer cells. Oncol. Rep. 37, 3287-3296, doi:10.3892/or.2017.5590 (2017). 56Sachan, R., Kundu, A., Jeon, Y., Choi, W. S., Yoon, K., Kim, I. S., Kwak, J. H. & Kim, H. S. Afrocyclamin A, a triterpene saponin, induces apoptosis and autophagic cell death via the PI3K/Akt/mTOR pathway in human prostate cancer cells. Phytomedicine 51, 139-150, doi:10.1016/j.phymed.2018.10.012 (2018). 57Wu, Q., Deng, J., Fan, D., Duan, Z., Zhu, C., Fu, R. & Wang, S. Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells. Biomed Pharmacother. 148, 64-74, doi:10.1016/j.bcp.2017.12.004 (2018). 58Peng, F., Wang, X., Shu, M., Yang, M., Wang, L., Ouyang, Z., Shen, C., Hou, X., Zhao, B., Wang, X., Zhang, L. W., Liu, Y. & Zhao, S. Raddeanin a suppresses glioblastoma growth by inducing ROS generation and subsequent JNK activation to promote cell apoptosis. Cell Physiol Biochem 47, 1108-1121, doi:10.1159/000490187 (2018). 59Gao, G. Y., Ma, J., Lu, P., Jiang, X. & Chang, C. Ophiopogonin B induces the autophagy and apoptosis of colon cancer cells by activating JNK/c-Jun signaling pathway. Biomed Pharmacother. 108, 1208-1215, doi:10.1016/j.biopha.2018.06.172 (2018). 60Li, B., Wang, Z., Xie, J. M., Wang, G., Qian, L. Q., Guan, X. M., Shen, X. P., Qin, Z. H., Shen, G. H., Li, X. Q. & Gao, Q. G. TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells. Acta Pharmacol. Sin. 40, 111-121, doi:10.1038/s41401-018-0001-2 (2019). 61Zhan, Y., Wang, K., Li, Q., Zou, Y., Chen, B., Gong, Q., Ho, H. I., Yin, T., Zhang, F., Lu, Y., Wu, W., Zhang, Y., Tan, Y., Du, B., Liu, X. & Xiao, J. The novel autophagy inhibitor alpha-hederin promoted paclitaxel cytotoxicity by increasing reactive oxygen species accumulation in non-small cell lung cancer cells. Int J Mol Sci 19, doi:10.3390/ijms19103221 (2018). 62Yu, S., Wang, L., Cao, Z., Gong, D., Liang, Q., Chen, H., Fu, H., Wang, W., Tang, X., Xie, Z., He, Y., Peng, C. & Li, Y. Anticancer effect of polyphyllin I in colorectal cancer cells through ROS-dependent autophagy and G2/M arrest mechanisms. Nat. Prod. Res. 32, 1489-1492, doi:10.1080/14786419.2017.1353512 (2018). 63Park, H. H., Choi, S. W., Lee, G. J., Kim, Y. D., Noh, H. J., Oh, S. J., Yoo, I., Ha, Y. J., Koo, G. B., Hong, S. S., Kwon, S. W. & Kim, Y. S. A formulated red ginseng extract inhibits autophagic flux and sensitizes to doxorubicin-induced cell death. J Ginseng Res. 43, 86-94, doi:10.1016/j.jgr.2017.08.006 (2019). 64Cvetanova, B., Shen, Y. C. & Shyur, L. F. Cumingianoside A, a phyto-triterpenoid saponin inhibits acquired BRAF inhibitor resistant melanoma growth via programmed cell death. Front Pharmacol. 9, doi:10.3389/fphar.2019.00030 (2019). 65Jiang, S. L., Guan, Y. D., Chen, X. S., Ge, P., Wang, X. L., Lao, Y. Z., Xiao, S. S., Zhang, Y., Yang, J. M., Xu, X. J., Cao, D. S. & Cheng, Y. Tubeimoside-1, a triterpenoid saponin, induces cytoprotective autophagy in human breast cancer cells in vitro via Akt-mediated pathway. Acta Pharmacol. Sin., doi:10.1038/s41401-018-0165-9 (2018). 66Cui, J., Man, S., Cui, N., Yang, L., Guo, Q., Ma, L. & Gao, W. The synergistic anticancer effect of formosanin C and polyphyllin VII based on caspase-mediated cleavage of Beclin1 inhibiting autophagy and promoting apoptosis. Cell Proliferation 52, doi:10.1111/cpr.12520 (2019). 67Bai, T., Wang, F., Zheng, Y., Liang, Q., Wang, Y., Kong, J. & Cai, L. Myocardial redox status, mitophagy and cardioprotection: a potential way to amend diabetic heart? Clinical Science 130, 1511-1521 (2016). 68Chourasia, A. H., Boland, M. L. & Macleod, K. F. Mitophagy and cancer. Cancer & metabolism 3, 4 (2015). 69Liu, K., Lee, J., Kim, J. Y., Wang, L., Tian, Y., Chan, S. T., Cho, C., Machida, K., Chen, D. & Ou, J. J. Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells. Mol Cell 68, 281-292.e285, doi:10.1016/j.molcel.2017.09.022 (2017). 70Singh, K., Roy, M., Prajapati, P., Lipatova, A., Sripada, L., Gohel, D., Singh, A., Mane, M., Godbole, M. M., Chumakov, P. M. & Singh, R. NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 1865, 1460-1476, doi:10.1016/j.bbadis.2019.02.018 (2019). 71Kang, X., Wang, H., Li, Y., Xiao, Y., Zhao, L., Zhang, T., Zhou, S., Zhou, X., Li, Y., Shou, Z., Chen, C. & Li, B. Alantolactone induces apoptosis through ROS-mediated AKT pathway and inhibition of PINK1-mediated mitophagy in human HepG2 cells. Artif Cells Nanomed Biotechnol. 47, 1961-1970, doi:10.1080/21691401.2019.1593854 (2019). 72Rodríguez-Enríquez, S., Pacheco-Velázquez, S. C., Marín-Hernández, Á., Gallardo-Pérez, J. C., Robledo-Cadena, D. X., Hernández-Reséndiz, I., García-García, J. D., Belmont-Díaz, J., López-Marure, R., Hernández-Esquivel, L., Sánchez-Thomas, R. & Moreno-Sánchez, R. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicology and Applied Pharmacology 370, 65-77, doi:10.1016/j.taap.2019.03.008 (2019). 73Yan, C., Luo, L., Guo, C. Y., Goto, S., Urata, Y., Shao, J. H. & Li, T. S. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett 388, 34-42, doi:10.1016/j.canlet.2016.11.018 (2017). 74Zhang, J., Sun, X., Wang, L., Wong, Y. K., Lee, Y. M., Zhou, C., Wu, G., Zhao, T., Yang, L. & Lu, L. Artesunate-induced mitophagy alters cellular redox status. Redox biology 19, 263-273 (2018). 75Seglen, P. O. & Brinchmann, M. F. Purification of autophagosomes from rat hepatocytes. Autophagy 6, 542-547, doi:10.4161/auto.6.4.11272 (2010). 76Yoshii, S. R. & Mizushima, N. Monitoring and Measuring Autophagy. Int J Mol Sci 18, doi:10.3390/ijms18091865 (2017). 77Di Rita, A., Peschiaroli, A., D′Acunzo, P., Strobbe, D., Hu, Z., Gruber, J., Nygaard, M., Lambrughi, M., Melino, G., Papaleo, E., Dengjel, J., El Alaoui, S., Campanella, M., Dötsch, V., Rogov, V. V., Strappazzon, F. & Cecconi, F. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat. Commun. 9, 3755, doi:10.1038/s41467-018-05722-3 (2018). 78Song, Y., Du, Y., Zou, W., Luo, Y., Zhang, X. & Fu, J. Involvement of impaired autophagy and mitophagy in Neuro-2a cell damage under hypoxic and/or high-glucose conditions. Sci. Rep. 8, 3301, doi:10.1038/s41598-018-20162-1 (2018). 79Wu, M.-Y., Wang, S.-F., Cai, C.-Z., Tan, J.-Q., Li, M., Lu, J.-J., Chen, X.-P., Wang, Y.-T., Zheng, W. & Lu, J.-H. Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget 8, 77673 (2017). 80Lao, Y., Wan, G., Liu, Z., Wang, X., Ruan, P., Xu, W., Xu, D., Xie, W., Zhang, Y. & Xu, H. The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 10, 736-749 (2014). 81Yao, N., Wang, C., Hu, N., Li, Y., Liu, M., Lei, Y., Chen, M., Chen, L., Chen, C. & Lan, P. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death Dis. 10, 232 (2019). 82Han, H., Chou, C. C., Li, R., Liu, J., Zhang, L., Zhu, W., Hu, J., Yang, B. & Tian, J. Chalcomoracin is a potent anticancer agent acting through triggering Oxidative stress via a mitophagy- and paraptosis-dependent mechanism. Sci Rep 8, 9566, doi:10.1038/s41598-018-27724-3 (2018). 83Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J. & Zorov, D. B. Mitochondrial membrane potential. Anal Biochem 552, 50-59, doi:10.1016/j.ab.2017.07.009 (2018). 84Pyatrikas, D. V., Fedoseeva, I. V., Varakina, N. N., Rusaleva, T. M., Stepanov, A. V., Fedyaeva, A. V., Borovskii, G. B. & Rikhvanov, E. G. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. FEMS Microbiol Lett 362, doi:10.1093/femsle/fnv082 (2015). 85Drake, L. E., Springer, M. Z., Poole, L. P., Kim, C. J. & Macleod, K. F. Expanding perspectives on the significance of mitophagy in cancer. Semin Cancer Biol 47, 110-124, doi:10.1016/j.semcancer.2017.04.008 (2017). 86Zhang, T., Xue, L., Li, L., Tang, C., Wan, Z., Wang, R., Tan, J., Tan, Y., Han, H. & Tian, R. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem 291, 21616-21629 (2016). 87Kuwana, T., Bouchier-Hayes, L., Chipuk, J. E., Bonzon, C., Sullivan, B. A., Green, D. R. & Newmeyer, D. D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell. 17, 525-535 (2005). 88Hanna, R. A., Quinsay, M. N., Orogo, A. M., Giang, K., Rikka, S. & Gustafsson, A. B. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094-19104, doi:10.1074/jbc.M111.322933 (2012). 89Shi, R. Y., Zhu, S. H., Li, V., Gibson, S. B., Xu, X. S. & Kong, J. M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 20, 1045-1055 (2014). 90Su, S.-H., Wu, Y.-F., Wang, D.-P. & Hai, J. Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion. Cell Death Dis. 9, 733, doi:10.1038/s41419-018-0755-y (2018). 91Ly, J. D., Grubb, D. R. & Lawen, A. The mitochondrial membrane potential (Δψ m) in apoptosis; an update. Apoptosis 8, 115-128 (2003). 92Wu, M. Y., Wang, S. F., Cai, C. Z., Tan, J. Q., Li, M., Lu, J. J., Chen, X. P., Wang, Y. T., Zheng, W. & Lu, J. H. Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget 8, 77673-77684, doi:10.18632/oncotarget.20767 (2017). 93Zheng, K., Li, Y., Wang, S., Wang, X., Liao, C., Hu, X., Fan, L., Kang, Q., Zeng, Y., Wu, X., Wu, H., Zhang, J., Wang, Y. & He, Z. Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy 12, 1593-1613, doi:10.1080/15548627.2016.1192751 (2016).
|