|
(p align=justify)(font face=Times New Roman)[1]National Health Insurance Administration, Ministry of Health and Welfare, Executive Yuan. National health insurance annual report. Available: http://www1.nhi.gov.tw/Nhi_E-LibraryPubWeb/CustomPage/Periodical.aspx?FType=8 [2]R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large Databases, in Proceedings of the 20th International Conference on Very Large Data Bases, 1994, vol. 1215, pp. 487-499: Morgan Kaufmann Publishers Inc. [3]M. R. Arbuckle, M. T. McClain, M. V. Rubertone, R. H. Scofield, G. J. Dennis, J. A. James et al., Development of Autoantibodies before the Clinical Onset of Systemic Lupus Erythematosus, New England Journal of Medicine, vol. 349, no. 16, pp. 1526-1533, 2003. [4]Z. Bedran, C. Quiroz, J. Rosa, L. J. Catoggio, and E. R. Soriano, Validation of a Prediction Rule for the Diagnosis of Rheumatoid Arthritis in Patients with Recent Onset Undifferentiated Arthritis, International Journal of Rheumatology, vol. 2013, p. 548502, 2013, Art. no. 548502. [5]M. Bergström, I. Ahlstrand, I. Thyberg, T. Falkmer, B. Börsbo, and M. Björk, ‘Like the worst toothache you’ve had’ – How people with rheumatoid arthritis describe and manage pain, Scandinavian Journal of Occupational Therapy, vol. 24, no. 6, pp. 468-476, 2017. [6]M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Computational Statistics & Data Analysis, vol. 52, no. 1, pp. 155-173, 2007. [7]M. Z. Cader, A. Filer, J. Hazlehurst, P. de Pablo, C. D. Buckley, and K. Raza, Performance of the 2010 ACR/EULAR criteria for rheumatoid arthritis: comparison with 1987 ACR criteria in a very early synovitis cohort, Annals of the Rheumatic Diseases, vol. 70, no. 6, pp. 949-955, 2011. [8]D. Cai, X. He, J. Han, and T. S. Huang, Graph Regularized Nonnegative Matrix Factorization for Data Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548-1560, 2011. [9]B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and Z. Chen, Detect and track latent factors with online nonnegative matrix factorization, presented at the Proceedings of the 20th international joint conference on Artifical intelligence, Hyderabad, India, 2007. [10]R. J. Carroll, A. E. Eyler, and J. C. Denny, Naïve Electronic Health Record Phenotype Identification for Rheumatoid Arthritis, AMIA Annual Symposium Proceedings, vol. 2011, pp. 189-196, 2011. [11]R. J. Carroll, W. K. Thompson, A. E. Eyler, A. M. Mandelin, T. Cai, R. M. Zink et al., Portability of an algorithm to identify rheumatoid arthritis in electronic health records, Journal of the American Medical Informatics Association : JAMIA, vol. 19, no. e1, pp. 162-169, 2012. [12]C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011. [13]T.-F. Chao, C.-J. Liu, T.-C. Tuan, S.-J. Chen, T.-J. Chen, G. Y. H. Lip et al., Risk and Prediction of Sudden Cardiac Death and Ventricular Arrhythmias for Patients with Atrial Fibrillation – A Nationwide Cohort Study, Scientific Reports, vol. 7, p. 46445, 2017. [14]R. Chatterjee, K. M. V. Narayan, J. Lipscomb, and L. S. Phillips, Screening adults for pre-diabetes and diabetes may be cost-saving, Diabetes care, vol. 33, no. 7, pp. 1484-1490, 2010. [15]H. Y. Chen, Y. H. Lin, P. F. Thien, S. C. Chang, Y. C. Chen, S. S. Lo et al., Identifying Core Herbal Treatments for Children with Asthma: Implication from a Chinese Herbal Medicine Database in Taiwan, Evidence-Based Complementary and Alternative Medicine, vol. 2013, p. 125943, 2013, Art. no. 125943. [16]P.-J. Chen, M.-C. Lin, M.-J. Lai, J.-C. Lin, H. H.-S. Lu, and V. S. Tseng, Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis, Gastroenterology, vol. 154, no. 3, pp. 568-575, 2018. [17]Y.-F. Chen, C.-S. Lin, K.-A. Wang, L. O. A. Rahman, D.-J. Lee, W.-S. Chung et al., Design of a Clinical Decision Support System for Fracture Prediction Using Imbalanced Dataset, Journal of Healthcare Engineering, vol. 2018, p. 13, 2018, Art. no. 9621640. [18]Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, Gene expression inference with deep learning, Bioinformatics (Oxford, England), vol. 32, no. 12, pp. 1832-1839, 2016. [19]Y. Cheng, Y. Lin, K. Chiang, and V. S. Tseng, Mining Sequential Risk Patterns From Large-Scale Clinical Databases for Early Assessment of Chronic Diseases: A Case Study on Chronic Obstructive Pulmonary Disease, IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 2, pp. 303-311, 2017. [20]E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks, in Proceedings of the 1st Machine Learning for Healthcare Conference, Proceedings of Machine Learning Research, 2016, vol. 56, pp. 301-318: PMLR. [21]E. Choy, Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis, Rheumatology (Oxford), vol. 51, no. Suppl 5, pp. v3-v11, 2012. [22]V. A. Cruz, L. Yamaguchi, C. N. Ribeiro, V. d. O. Magalhães, J. Rego, and N. A. d. Silva, Ulcerative colitis and rheumatoid arthritis: a rare association - case report, Revista Brasileira de Reumatologia, vol. 52, no. 4, pp. 648-650, 2012. [23]D. K. D., O. D. C. I., H. Wolfgang, M. D. S., L. A. A., D. L. A. et al., The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age‐dependent manner, Arthritis & Rheumatism, vol. 62, no. 11, pp. 3161-3172, 2010. [24]X. Ding, Y. Zhang, T. Liu, and J. Duan, Deep learning for event-driven stock prediction, presented at the Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015. [25]M. Dougados, M. Soubrier, A. Antunez, P. Balint, A. Balsa, M. H. Buch et al., Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA), Annals of the Rheumatic Diseases, vol. 73, no. 1, pp. 62-68, 2014. [26]A. Ebringer and T. Rashid, Rheumatoid arthritis is caused by a Proteus urinary tract infection, APMIS, vol. 122, no. 5, pp. 363-368, 2014. [27]N. B. Erichson, A. Mendible, S. Wihlborn, and J. N. Kutz, Randomized nonnegative matrix factorization, Pattern Recognition Letters, vol. 104, pp. 1-7, 2018. [28]T. W. Fischer, H. I. Bauer, T. Graefe, U. Barta, and P. Elsner, Erythema multiforme-like drug eruption with oral involvement after intake of leflunomide, Dermatology, vol. 207, no. 4, pp. 386-389, 2004. [29]P. Foti Daniela, M. Greco, E. Palella, and E. Gulletta, New laboratory markers for the management of rheumatoid arthritis patients, Clinical Chemistry and Laboratory Medicine (CCLM), vol. 52, no. 12, p. 1729, 2014. [30]K. Fraser and L. Robertson, Chronic urticaria and autoimmunity, Skin therapy letter, vol. 18, no. 7, pp. 5-9, 2013. [31]F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: continual prediction with LSTM, presented at the Ninth International Conference on Artificial Neural Networks (ICANN), 1999. [32]A. Gibofsky, Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis, The American Journal of Managed Care, vol. 18(13 Suppl), pp. S295-302, 2012. [33]Y. P. M. Goekoop-Ruiterman, J. K. De Vries-Bouwstra, C. F. Allaart, D. Van Zeben, P. J. S. M. Kerstens, J. M. W. Hazes et al., Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial, Arthritis & Rheumatism, vol. 52, no. 11, pp. 3381-3390, 2005. [34]P. Groves, B. Kayyali, D. Knott, and S. Van Kuiken, The ‘big data’revolution in healthcare, McKinsey Quarterly, vol. 2, no. 3, 2013. [35]B. Haikola, S. Huumonen, K. Sipilä, K. Oikarinen, T. Remes-Lyly, and A.-L. Söderholm, Radiological signs indicating infection of dental origin in elderly Finns, Acta Odontologica Scandinavica, vol. 71, no. 3-4, pp. 498-507, 2013. [36]K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. [37]J. C. Ho, J. Ghosh, and J. Sun, Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, New York, USA, 2014. [38]G. Hripcsak and D. J. Albers, Next-generation phenotyping of electronic health records, Journal of the American Medical Informatics Association : JAMIA, vol. 20, no. 1, pp. 117-121, 2013. [39]T. W. J. Huizinga and A. H. M. van der Helmvan Mil, Prediction and prevention of rheumatoid arthritis, Revista Colombiana de Reumatología, vol. 14, pp. 106-114, 2007. [40]J. Jaimes-Hernández, A. Mendoza-Fuentes, C. I. Meléndez-Mercado, and P. Aranda-Pereira, Chronic eosinophilic pneumonia: Autoimmune phenomenon or immunoallergic disease? Case report and literature review, Reumatología Clínica, vol. 8, no. 3, pp. 145-148, 2012. [41]H. Jansen, C. Willenborg, W. Lieb, L. Zeng, P. G. Ferrario, C. Loley et al., Rheumatoid Arthritis and Coronary Artery Disease: Genetic Analyses Do Not Support a Causal Relation, The Journal of Rheumatology, vol. 44, no. 1, pp. 4-10, 2017. [42]B. Jin, C. Che, Z. Liu, S. Zhang, X. Yin, and X. Wei, Predicting the Risk of Heart Failure With EHR Sequential Data Modeling, IEEE Access, vol. 6, pp. 9256-9261, 2018. [43]S. Kapoor, Beyond rheumatoid arthritis: The close association between interstitial cystitis and Sjogren's syndrome, Neurourology and Urodynamics, vol. 34, no. 1, p. 101, 2015. [44]O. Karadag, U. Kalyoncu, A. Akdogan, Y. Karadag, S. Bilgen, S. Ozbakır et al., Sonographic assessment of carpal tunnel syndrome in rheumatoid arthritis: prevalence and correlation with disease activity, Rheumatology International, vol. 32, no. 8, pp. 2313-2319, 2012. [45]S. Kaur, S. White, and P. M. Bartold, Periodontal Disease and Rheumatoid Arthritis: A Systematic Review, Journal of Dental Research, vol. 92, no. 5, pp. 399-408, 2013. [46]J. Ker, L. Wang, J. Rao, and T. Lim, Deep Learning Applications in Medical Image Analysis, IEEE Access, vol. 6, pp. 9375-9389, 2018. [47]R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, presented at the Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2, Montreal, Quebec, Canada, 1995. [48]A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, presented at the Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada, 2012. [49]H. M. Kruizenga, M. W. Van Tulder, J. C. Seidell, A. Thijs, H. J. Ader, and M. A. E. Van Bokhorst-de van der Schueren, Effectiveness and cost-effectiveness of early screening and treatment of malnourished patients, The American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 1082-1089, 2005. [50]C.-C. Kuo, F.-C. Yang, M.-H. Yang, and D.-D. Lee, Predicting the onset of bullous pemphigoid with co-morbidities: A survey based on a nationwide medical database, in 2013 IEEE International Conference on Bioinformatics and Biomedicine, 2013, pp. 30-37. [51]C. F. Kuo, S. F. Luo, L. C. See, I. J. Chou, H. C. Chang, and K. H. Yu, Rheumatoid arthritis prevalence, incidence, and mortality rates: a nationwide population study in Taiwan, (in English), Rheumatology International, vol. 33, no. 2, pp. 355-360, 2013. [52]C. Lam, C.-F. Kuan, J. Miser, K.-Y. Hsieh, Y.-A. Fang, Y.-C. Li et al., Emergency department utilization can indicate early diagnosis of digestive tract cancers: A population-based study in Taiwan, Computer Methods and Programs in Biomedicine, vol. 115, no. 3, pp. 103-109, 2014. [53]G.-C. Lan, C.-H. Lee, Y.-Y. Lee, T. V. S., C.-Y. Chin, M.-L. Day et al., Disease Risk Prediction by Mining Personalized Health Trend Patterns: A Case Study on Diabetes, in Technologies and Applications of Artificial Intelligence (TAAI), 2012 Conference on, 2012, pp. 27-32. [54]G. V. Lawry, M. L. Finerman, W. N. Hanafee, A. A. Mancuso, P. T. Fan, and R. Bluestone, Laryngeal involvement in rheumatoid arthritis, Arthritis & Rheumatism, vol. 27, no. 8, pp. 873-882, 1984. [55]C.-H. Lee, J. C.-Y. Chen, and V. S. Tseng, A novel data mining mechanism considering bio-signal and environmental data with applications on asthma monitoring, Computer Methods and Programs in Biomedicine, vol. 101, no. 1, pp. 44-61, 2011. [56]D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol. 401, p. 788, 1999. [57]D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, presented at the Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver, CO, 2000. [58]L. Y. Lee, M. M. Akhtar, O. Kirresh, and T. Gibson, Interstitial keratitis and sensorineural hearing loss as a manifestation of rheumatoid arthritis: clinical lessons from a rare complication, BMJ Case Reports, vol. 2012, 2012. [59]N. Lesh, M. J. Zaki, and M. Oglhara, Scalable feature mining for sequential data, IEEE Intelligent Systems and their Applications, vol. 15, no. 2, pp. 48-56, 2000. [60]J.-N. Liao, T.-F. Chao, C.-J. Liu, K.-L. Wang, S.-J. Chen, T.-C. Tuan et al., Risk and prediction of dementia in patients with atrial fibrillation--a nationwide population-based cohort study, International Journal of Cardiology, vol. 199, pp. 25-30, 2015. [61]K. P. Liao, T. Cai, V. Gainer, S. Goryachev, Q. Zeng-treitler, S. Raychaudhuri et al., Electronic medical records for discovery research in rheumatoid arthritis, Arthritis care & research, vol. 62, no. 8, pp. 1120-1127, 2010. [62]R. Liao, Y. Zhang, J. Guan, and S. Zhou, CloudNMF: a MapReduce implementation of nonnegative matrix factorization for large-scale biological datasets, Genomics, proteomics & bioinformatics, vol. 12, no. 1, pp. 48-51, 2014. [63]C.-C. Lin, C.-I. Li, C.-Y. Hsiao, C.-S. Liu, S.-Y. Yang, C.-C. Lee et al., Time trend analysis of the prevalence and incidence of diagnosed type 2 diabetes among adults in Taiwan from 2000 to 2007: a population-based study, BMC public health, vol. 13, pp. 318-318, 2013. [64]B. Liu, W. Hsu, and Y. Ma, Integrating classification and association rule mining, presented at the Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, 1998. [65]J. S. Mathias, A. Agrawal, J. Feinglass, A. J. Cooper, D. W. Baker, and A. Choudhary, Development of a 5 year life expectancy index in older adults using predictive mining of electronic health record data, Journal of the American Medical Informatics Association : JAMIA, vol. 20, no. e1, pp. 118-124, 2013. [66]E. Matsuura, F. Atzeni, P. Sarzi-Puttini, M. Turiel, L. Lopez, and M. Nurmohamed, Is atherosclerosis an autoimmune disease?, BMC Medicine, vol. 12, no. 1, p. 47, 2014. [67]W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943. [68]E. McNally, C. Keogh, R. Galvin, and T. Fahey, Diagnostic accuracy of a clinical prediction rule (CPR) for identifying patients with recent-onset undifferentiated arthritis who are at a high risk of developing rheumatoid arthritis: A systematic review and meta-analysis, Seminars in arthritis and rheumatism, vol. 43, no. 4, pp. 498-507, 2014. [69]E. Mejía-Roa, D. Tabas-Madrid, J. Setoain, C. García, F. Tirado, and A. Pascual-Montano, NMF-mGPU: non-negative matrix factorization on multi-GPU systems, BMC Bioinformatics, journal article vol. 16, no. 1, p. 43, 2015. [70]R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records, Scientific Reports, vol. 6, p. 26094, 2016. [71]P. Monsarrat, J.-N. Vergnes, A. Cantagrel, N. Algans, S. Cousty, P. Kemoun et al., Effect of periodontal treatment on the clinical parameters of patients with rheumatoid arthritis: study protocol of the randomized, controlled ESPERA trial, Trials, vol. 14, p. 253, 2013. [72]C. Mora, J. Díaz, and G. Quintana, Costos directos de la artritis reumatoide temprana en el primer año de atención: simulación de tres situaciones clínicas en un hospital universitario de tercer nivel en Colombia, Biomédica, vol. 29, pp. 43-50, 2009. [73]T. Ng, L. Chew, and C. W. Yap, A Clinical Decision Support Tool To Predict Survival in Cancer Patients beyond 120 Days after Palliative Chemotherapy, Journal of Palliative Medicine, Article vol. 15, no. 8, pp. 863-869, 2012. [74]P. Nyirjesy, J. M. Nixon, C. A. Jordan, and H. R. Buckley, Malassezia furfur folliculitis of the vulva: olive oil solves the mystery, Obstetrics and gynecology, vol. 84, no. 4 Pt 2, pp. 710-711, 1994. [75]P. J. O'Connor, Crystal Deposition Disease and Psoriatic Arthritis, Seminars in musculoskeletal radiology, vol. 17, no. 1, pp. 74-79, 2013. [76]Y. Ozaki, R. Aoki, T. Kimura, Y. Takashima, and T. Yamada, Characterizing muscular activities using non-negative matrix factorization from EMG channels for driver swings in golf, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 892-895. [77]P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol. 5, no. 2, pp. 111-126, 1994. [78]P. Padilla, M. Lopez, J. M. Gorriz, J. Ramirez, D. Salas-Gonzalez, and I. Alvarez, NMF-SVM Based CAD Tool Applied to Functional Brain Images for the Diagnosis of Alzheimer's Disease, IEEE Transactions on Medical Imaging, vol. 31, no. 2, pp. 207-216, 2012. [79]M. R. L. Paine, J. Kim, R. V. Bennett, R. M. Parry, D. A. Gaul, M. D. Wang et al., Whole Reproductive System Non-Negative Matrix Factorization Mass Spectrometry Imaging of an Early-Stage Ovarian Cancer Mouse Model, PLOS ONE, vol. 11, no. 5, p. e0154837, 2016. [80]T. Perry, H. Zha, M. E. Oster, P. A. Frias, and M. Braunstein, Utility of a clinical support tool for outpatient evaluation of pediatric chest pain, AMIA ... Annual Symposium proceedings. AMIA Symposium, vol. 2012, pp. 726-733, 2012. [81]J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., 1993, p. 302. [82]H.-H. Rau, C.-Y. Hsu, Y.-A. Lin, S. Atique, A. Fuad, L.-M. Wei et al., Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network, Computer Methods and Programs in Biomedicine, vol. 125, pp. 58-65, 2016. [83]E. Sayers. (2008). E-utilities quick start. Available: http://www.ncbi.nlm.nih.gov/books/NBK25500/ [84]M. Schneider and K. Krüger, Rheumatoid Arthritis—Early Diagnosis and Disease Management, Deutsches Ärzteblatt International, vol. 110, no. 27-28, pp. 477-484, 2013. [85]D. L. Scott, Early rheumatoid arthritis, British Medical Bulletin, vol. 81-82, no. 1, pp. 97-114, 2007. [86]N. A. Shadick, N. R. Cook, E. W. Karlson, P. M. Ridker, N. E. Maher, J. E. Manson et al., C-Reactive Protein in the Prediction of Rheumatoid Arthritis in Women, Archives of Internal Medicine, vol. 166, no. 22, pp. 2490-2494, 2006. [87]G. Shang, A. Richardson, M. E. Gahan, S. Easteal, S. Ohms, and B. A. Lidbury, Predicting the presence of hepatitis B virus surface antigen in Chinese patients by pathology data mining, Journal of Medical Virology, vol. 85, no. 8, pp. 1334-1339, 2013. [88]C.-C. Shen, L.-Y. Hu, and Y.-H. Hu, Comorbidity study of borderline personality disorder: applying association rule mining to the Taiwan national health insurance research database, BMC medical informatics and decision making, vol. 17, no. 1, pp. 8-8, 2017. [89]C. Shivade, P. Raghavan, E. Fosler-Lussier, P. J. Embi, N. Elhadad, S. B. Johnson et al., A review of approaches to identifying patient phenotype cohorts using electronic health records, Journal of the American Medical Informatics Association : JAMIA, vol. 21, no. 2, pp. 221-230, 2014. [90]D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche et al., Mastering the game of Go with deep neural networks and tree search, Nature, Article vol. 529, p. 484, 2016. [91]J. A. Singh, A. R. Holmgren, and S. Noorbaloochi, Accuracy of veterans administration databases for a diagnosis of rheumatoid arthritis, Arthritis Care & Research, vol. 51, no. 6, pp. 952-957, 2004. [92]T. L. Skare, R. Nisihara, B. Barbosa, A. da Luz, S. Utiyama, and V. Picceli, Anti-CCP in systemic lupus erythematosus patients: a cross sectional study in Brazilian patients, (in English), Clinical Rheumatology, vol. 32, no. 7, pp. 1065-1070, 2013. [93]J. S. Smolen, R. Landewé, J. Bijlsma, G. Burmester, K. Chatzidionysiou, M. Dougados et al., EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update, Annals of the Rheumatic Diseases, 2017. [94]I. Smolik, D. Robinson, and H. S. El-Gabalawy, Periodontitis and rheumatoid arthritis: epidemiologic, clinical, and immunologic associations, Compend Contin Educ Dent, vol. 30, no. 4, pp. 188-90, 192, 194 passim; quiz 198, 210., 2009. [95]C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in AAAI, 2017, vol. 4, p. 12. [96]Y. M. Tai and H. W. Chiu, Comorbidity study of ADHD: Applying association rule mining (ARM) to National Health Insurance Database of Taiwan, International Journal of Medical Informatics, vol. 78, no. 12, pp. 75-83, 2009. [97]V. S. Tseng and C.-H. Lee, Effective temporal data classification by integrating sequential pattern mining and probabilistic induction, Expert Systems with Applications, vol. 36, no. 5, pp. 9524-9532, 2009. [98]S. A. Turk, D. van Schaardenburg, M. Boers, S. de Boer, C. Fokker, W. F. Lems et al., An unfavorable body composition is common in early arthritis patients: A case control study, PLOS ONE, vol. 13, no. 3, p. e0193377, 2018. [99]A. H. M. van der Helm-vanMil, S. le Cessie, H. van Dongen, F. C. Breedveld, R. E. M. Toes, and T. W. J. Huizinga, A prediction rule for disease outcome in patients with Recent-onset undifferentiated arthritis: How to guide individual treatment decisions, Arthritis & Rheumatism, vol. 56, no. 2, pp. 433-440, 2007. [100]V. N. Vapnik, The nature of statistical learning theory. Springer-Verlag New York, Inc., 1995, p. 188. [101]K. E. Verweij, A. M. E. van Well, J. W. vd Sluijs, and A. Dees, Late Onset Takayasu Arteritis and Rheumatoid Arthritis, Case Reports in Medicine, vol. 2012, p. 523218, 2012, Art. no. 523218. [102]B. C. M. Wang, P.-N. Hsu, W. Furnback, J. Ney, Y.-W. Yang, C.-H. Fang et al., Estimating the Economic Burden of Rheumatoid Arthritis in Taiwan Using the National Health Insurance Database, Drugs - real world outcomes, vol. 3, no. 1, pp. 107-114, 2016. [103]W.-Q. Wei, C. Tao, G. Jiang, and C. G. Chute, A high throughput semantic concept frequency based approach for patient identification: a case study using type 2 diabetes mellitus clinical notes, AMIA ... Annual Symposium proceedings. AMIA Symposium, vol. 2010, pp. 857-861, 2010. [104]W.-Q. Wei, L. A. Bastarache, R. J. Carroll, J. E. Marlo, T. J. Osterman, E. R. Gamazon et al., Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record, PLOS ONE, vol. 12, no. 7, p. e0175508, 2017. [105]L. Wenmin, H. Jiawei, and P. Jian, CMAR: accurate and efficient classification based on multiple class-association rules, presented at the First IEEE International Conference on Data Mining (ICDM'01), 2001. [106]H. Xiong, J. Zhang, Y. Huang, K. Leach, and L. E. Barnes, Daehr: A Discriminant Analysis Framework for Electronic Health Record Data and an Application to Early Detection of Mental Health Disorders, ACM Trans. Intell. Syst. Technol., vol. 8, no. 3, pp. 1-21, 2017. [107]H. Yang, Y.-H. Chen, T.-F. Hsieh, S.-Y. Chuang, and M.-J. Wu, Prediction of Mortality in Incident Hemodialysis Patients: A Validation and Comparison of CHADS2, CHA2DS2, and CCI Scores, PLOS ONE, vol. 11, no. 5, p. e0154627, 2016. [108]H. Yang and C. Seoighe, Impact of the Choice of Normalization Method on Molecular Cancer Class Discovery Using Nonnegative Matrix Factorization, PLOS ONE, vol. 11, no. 10, p. e0164880, 2016. [109]X. Yin and J. Han, CPAR: Classification based on Predictive Association Rules, in Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 331-335, 2003. [110]J. Zhang, H. Xiong, Y. Huang, H. Wu, K. Leach, and L. E. Barnes, M-SEQ: Early detection of anxiety and depression via temporal orders of diagnoses in electronic health data, in 2015 IEEE International Conference on Big Data (Big Data), 2015, pp. 2569-2577. [111]J. Zhang, J. Gong, and L. Barnes, HCNN: Heterogeneous Convolutional Neural Networks for Comorbid Risk Prediction with Electronic Health Records, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2017, pp. 214-221.(/font)(/p)
|