|
[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.Optics: ordering points to identify the clustering structure. In SIGMOD, pages 49–60, 1999. [2] K. Bøgh, A. Skovsgaard, and C. S. Jensen. Groupfinder: A new approach to top-k point-of-interest group retrieval. PVLDB, 6(12):1226–1229, 2013. [3] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB, 6(1):1–12, 2012. [4] Dingming Wu.A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters. In CIKM, 2016. [5] Kai Yao, Jianjun Li, Guohui Li1, and Changyin Luo. Efficient Group Top-k Spatial Keyword Query Processing. In APWeb, 2016. [6] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE, pages 656–665, 2008. [7] D. Wu, G. Cong, and C. S. Jensen. A framework for efficient spatial web object retrieval. VLDB J., 21(6):797–822, 2012. [8] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient processing of top-k spatial keyword queries. In SSTD, pages 205–222, 2011. [9] K. Bøgh, A. Skovsgaard, and C. S. Jensen. Groupfinder: A new approach to top-k point-of-interest group retrieval. PVLDB, 6(12):1226–1229, 2013. [10] A. Skovsgaard and C. S. Jensen. Finding top-k relevant groups of spatial web objects. VLDB J., 24(4):537–555,2015. [11] D.-W. Choi, C.-W. Chung, and Y. Tao. A scalable algorithm for maximizing range sum in spatial databases. PVLDB,5(11):1088–1099, 2012. [12] J. Liu, G. Yu, and H. Sun. Subject-oriented top-k hot region queries in spatial dataset. In CIKM, pages 2409–2412, 2011. [13] Y. Tao, X. Hu, D.-W. Choi, and C.-W. Chung. Approximate maxrs in spatial databases. PVLDB, 6(13):1546–1557, 2013. [14] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions of interest for user exploration. PVLDB, 7(9):733–744, 2014. [15] Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14.ACM, 1984. [16] Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.In: Proceedings of 20th International Conference on Data Engineering, pp. 301–312, 2004. [17] Yiu, M.L., Mamoulis, Papadias, D.: Aggregate nearest neighbor queries in road networks. TKDE, 820–833, 2005. [18] Nick Roussopoulos, Stephen Kelley and Frédéric Vincent, “Nearest neighbor queries, in ACM SIGMOD, pp. 71-79, 1995. [19]R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis,“Nearest neighbor and reverse nearest neighbor queries for moving objects, in VLDB Journal, vol. 15, no. 3, pp. 229–249, 2006. [20] Reynold Cheng, Lei Chen, Jinchuan Chen, Xike Xie,“Evaluating probability threshold k-nearest-neighbor queries over uncertain data, in EDBT, pp. 672-683, 2009. [21] Jiajia Li, Botao Wang, and Guoren Wang, “Efficient Probabilistic Reverse k-Nearest Neighbors Query Processing on Uncertain Data, in DASFAA, pp. 456-471, 2013. [22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226–231, 1996. [23] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points to identify the clustering structure. In SIGMOD, pages 49–60, 1999. [24] X. Wang and H. J. Hamilton. Dbrs: A density-based spatial clustering method with random sampling. In PAKDD, pages 563–575, 2003. [25] P. Liu, D. Zhou, and N. Wu. Vdbscan: Varied density base spatial clustering of applications with noise. In Service Systems and Service Management, pages 1–4, 2007. [26] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm gdbscan and itsapplications. Data Min. Knowl. Discov., 2(2):169–194, 1998. [27] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware, J. Comput. Syst. Sci. 66 (4) (2003) 614–656. [28] G. Das, D. Gunopulos, N. Koudas, D. Tsirogiannis, Answering top-k queries using views, in: Proceedings of VLDB, 2006, pp. 451–462. [29] I.F. Ilyas, G. Beskales, M.A. Soliman, A survey of top-k query processing techniques in relational database systems, ACM Comput. Surv. 40 (4) (2008). [30] L. G. A. Marian, N. Bruno. Evaluating Top-k Queries Over Web Accesible Sources. TODS 29(2), 2004. [31] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvag. Efficient processing of top-k spatial keyword queries. In SSTD, pages 205–222, 2011. [32] G. Tsatsanifos and A. Vlachou. On processing top-k spatio-textual preference queries. In EDBT, pages 433–444, 2015. [33] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic web search engines. In SIGMOD,pages 277–288, 2006. [34] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial web objects. PVLDB,2(1):337–348, 2009. [35] Xin, Cong Gao, Jensen Christian, Ooi Beng Chin, “Collective spatial keyword querying, in Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, Pages 373-384, Athens, Greece, June 12 - 16, 2011. [36] L Chen, G Cong, CS Jensen, D Wu, “Spatial keyword query processing: an experimental evaluation, in Proceedings of the 39th international conference on Very Large Data Bases (VLDB), Pages 217-228, January 2013. [37] JB Rocha-Junior, K Nørvåg, Top-k spatial keyword queries on road networks, EDBT, 2012. [38] Siqiang Luo, Yifeng Luo, Shuigeng Zhou, Gao Cong, Jihong Guan, Zheng Yong,“Distributed Spatial Keyword Querying on Road Networks,EDBT, 2014. [39] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan, “Processing spatial keyword query as a top-k aggregation query, in Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, 2014. [40] A Cary, O Wolfson, N Rishe, “Efficient and Scalable Method for Processing Top-k Spatial Boolean Queries, SSDBM, 2010
|