跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳瑩
研究生(外文):Chia-YingLin
論文名稱:雲端無線存取網路架構於第五代行動通訊系統之聯結控制
論文名稱(外文):Association Control in the 5G Network with Cloud Radio Access Network Architecture
指導教授:蔡孟勳蔡孟勳引用關係
指導教授(外文):Meng-Hsun Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:123
中文關鍵詞:聯結控制雲端無線存取網路軟體定義網路第五代行動通訊系統
外文關鍵詞:Association ControlCloud Radio Access NetworkSoftware-Dened Networkingthe Fifth Generation Mobile Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著行動裝置的普及與物聯網之快速發展,網路存取的使用量大增,第五代行動通訊系統便以處理大量服務需求與兼容異質網路環境為目標,針對彈性的架構與動態的資源分配技術廣泛地討論。例如雲端無線存取網路將傳統基地台的基頻單元佈建在雲端,使基地台間可共享運算資源,以達到最佳化分配。而軟體定義網路則是透過網路管理架構的軟體化與控制模組的中心化,動態且彈性地即時管理網路服務。

在此種集中管理的網路架構下,現有的聯結管理機制並無法受益於此。此外,當裝置數量爆炸性成長,但無線資源仍相當有限的狀況時,在單一基地台底下,大量的聯結建立請求將導致嚴重的碰撞問題,降低資料傳輸的成功率,造成不必要的電力浪費。在多個基地台間,則需更全面性的負載平衡演算法,計算出最佳的聯結關係,提升整體的傳輸量,並避免基地台邊緣的乒乓效應造成的大量且不必要的交遞。因此,在採用雲端無存取網路和軟體定義網路的5G架構下,如何更有效率地控制與分配裝置與基地台之聯結,並處理大量的請求,需要進一步的研究探討。

本論文針對裝置數量超越基地台所能負荷的物理限制情境下,提出將裝置分組的核心想法,以組為單位設計聯結機制,並延遲部分請求,來提升整體網路的效率。在單一基地台底下,針對不移動的機器間通訊,將裝置依地域分組,並由群組組長協調組內的請求排序,來減緩基地台的隨機存取碰撞。在多基地台間,則針對使用者攜帶的移動裝置,透過集中的網路管理架構來取得更全面的資訊以達到負載平衡,在群組移動後,計算出各個基地台最佳的覆蓋範圍,以提升吞吐量。最後在基地台邊緣延遲交遞來減少乒乓效應的發生。

針對上述三種狀況:碰撞、負載平衡以及乒乓效應,論文中透過數學模型分析與模擬實驗來觀察成效,結果顯示在資源供不應求的狀況下,本論文提出之機制皆可透過增加使用者些許的延遲,換取整體網路更好的使用效率。此結果可提供電信業者在使用者需求超出網路硬體限制、資源不足時使用,適用於5G佈建早期的方案。
With the popularity of mobile devices and the advance of Internet of Things, the fifth generation mobile network (5G) requires to meet large amount of service requests in the heterogeneous networks. For this purpose, flexible network architectures with dynamic resource management, such as Cloud Radio Access Network (C-RAN) and Software-Defined Networking (SDN), are widely studied in recent years.

In C-RAN, a novel mobile network architecture, Baseband Units (BBUs) are centralized, virtualized and shared among Remote Radio Units (RRUs) to optimize the resources utilization of base stations. Compared to the traditional networks, SDN separates control plane and data plane to provide a more flexible and programmable network architecture. In this centralized architecture, services can be optimally managed in a global view.

However, existing association control schemes are not designed for the centralized network architecture. Besides, performance issues occur when the amount of devices increase significantly with limited wireless resources. With the large amount of devices, severe collisions occur under one base station, and load imbalance among base stations happens without a centralized association control. At the edge between cells, ping-pong effect may cause unnecessary handovers and signal overload. Therefore, how to design an efficient association control scheme under 5G centralized network architecture to handle the overloaded demands is required to be studied.

The idea of grouping devices is proposed in this dissertation to reduce the computation from the number of devices to the number of group in the association schemes. The collisions at a base station can be reduced by the scheduling in the group. When groups of devices move among base stations, SDN provide global view to find optimal coverages of base stations to increase throughput. At the edge of cell, the execution of handovers are postponed to avoid unnecessary handovers.

This dissertation proposes three schemes to handle the issues mentioned above: collisions, load balancing and ping-pong effect. Mathematical analysis and simulation experiments are conducted to evaluate the performances of these proposed schemes. The results show that the impacts of the issues are reduced with little delay when the demands are significantly higher than the resources that system can supply. The contribution of this dissertation is to provide some suggestions to operators at the early stage of 5G deployment.
摘要 i
Abstract iii
Acknowledgements v
Contents vi
List of Tables ix
List of Figures x
1 Introduction 1
1.1 The 5G Network 1
1.1.1 Software-Defined Networking and Network-Function Virtualization 4
1.1.2 Cloud Radio Access Networks 7
1.2 Studied Issues 11
1.2.1 Collision 12
1.2.2 Load Balancing 14
1.2.3 Ping-pong Effect 14
1.3 Organization of the Dissertation 15
2 Gateway-assisted Two-stage Radio Access Scheme 16
2.1 Introduction to Collision Issue 16
2.2 GATS Scheme 24
2.3 Analytical Model 27
2.3.1 Analytic Model for Basic Scheme 28
2.3.2 Analytic Model for GATS Scheme 30
2.4 Performance Evaluation 35
2.4.1 Effects of Nd on φ and E[Q] 35
2.4.2 Effects of λ and Ng on RA-slot Utilization 38
2.4.3 Effects of λ and Ng on Access Success Probability 39
2.4.4 Effects of λ and Ng on Average Message Delay 40
2.4.5 Discussion about Power Consumption 42
2.5 Summary 43
3 Adaptive Load balancing Scheme 45
3.1 Introduction to Load Balancing Issue 45
3.2 ALB Scheme 48
3.2.1 System Model 48
3.2.2 Flowcharts 51
3.2.3 Load Balancing Algorithm 56
3.3 Performance Evaluation 59
3.3.1 Simulation Model 59
3.3.2 Performance of APs 61
3.3.3 Effects on Users 65
3.4 Summary 69
4 Delay Handover Scheme 71
4.1 Introduction to Ping-pong Effect 71
4.2 DHO Scheme 74
4.2.1 Scenarios 74
4.2.2 Finite State Machine 76
4.3 Analytical Model 78
4.3.1 Timing Diagrams 79
4.3.2 Derivation of E[H(0)] 83
4.3.3 Derivation of E[H(d)] 84
4.3.4 Validation of R(d) 88
4.4 Performance Evaluation 93
4.4.1 Estimation of Simulation Parameters 93
4.4.2 Configuration of Delay Timer Dt 95
4.4.3 Effects of UE Mobility Model 99
4.4.4 Comparisons with Related Works 102
4.5 Summary 106
5 Conclusions and Future Work 107
References 109
Curriculum Vitae 121
Publication List 122
[1] ITUR WP5D. Imt vision-framework and overall objectives of the future development of imt for 2020 and beyond. Int. Telecommun. Union, Geneva, Switzerland, ITU Recommendation M, 2083, 2015.
[2] NGMN Alliance. 5g white paper. Next generation mobile networks, white paper, 1, 2015.
[3] R. Wang, H. Hu, and X. Yang. Potentials and challenges of c-ran supporting multi-rats toward 5g mobile networks. IEEE Access, 2:1187-1195, 2014.
[4] Ekram Hossain and Monowar Hasan. 5g cellular: key enabling technologies and research challenges. arXiv preprint arXiv:1503.00674, 2015.
[5] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2):69-74, 2008.
[6] Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. K. Sabhikhi. Wireless network cloud: Architecture and system requirements. IBM Journal of Research and Development, 54(1):4:1-4:12, 2010.
[7] China China Mobile Research Institute Beijing. C-ran the road towards green ran. Report, 2011.
[8] Min Chen, Yin Zhang, Long Hu, Tarik Taleb, and Zhengguo Sheng. Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network to enable 5g technologies. Mobile Networks and Applications, 20(6):704-712, 2015.
[9] Mao Yang, Yong Li, Depeng Jin, Li Su, Shaowu Ma, and Lieguang Zeng. Openran: a software-defined ran architecture via virtualization. In ACM SIGCOMM computer communication review, volume 43, pages 549-550. ACM, 2013.
[10] A. Rostami, P. Ohlen, K. Wang, Z. Ghebretensae, B. Skubic, M. Santos, and A. Vidal. Orchestration of ran and transport networks for 5g: An sdn approach. IEEE Communications Magazine, 55(4):64-70, 2017.
[11] xran forum merges with c-ran alliance to form oran alliance, 2018.
[12] 3GPP TR 38.801 V14.0.0. Study on new radio access technology: Radio access architecture and interfaces. 2017.
[13] 3GPP TR 38.401 V15.6.0. Ng-ran; architecture description. 2019.
[14] Mark Hung. Leading the iot, gartner insights on how to lead in a connected world. Gartner Research, pages 1-29, 2017.
[15] GSMA Intelligence. The mobile economy. SubSaharan Africa, 2015, 2015.
[16] Dantong Liu, Lifeng Wang, Yue Chen, Maged Elkashlan, Kai-Kit Wong, Robert Schober, and Lajos Hanzo. User association in 5g networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 18(2):1018-1044, 2016.
[17] HUAWEI. 5g network architecture: A high-level perspective. White Paper, October, 2016.
[18] Chia-Ying Lin, Hung-Wei Kao, Meng-Hsun Tsai, and Hui-Ling Chang. Gatewayassisted two-stage radio access for machine type communication in lte-advanced network. Computer Communications, 105:79 - 88, 2017.
[19] C.-Y Lin, W.-P Tsai, M.-H Tsai, and Y.-Z Cai. Adaptive load-balancing scheme through wireless sdn-based association control. In 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pages 546-553, March 2017.
[20] C.-Y Lin, H.-L Chang, M.-T Wu, Y.-Z Cai, Y.-T Wang, L.-A Chen, M.-H Tsai, and R.-S Liu. Reducing signal overload by disconnection tolerant voice service in heterogeneous networks. IEEE Access, 7:332-346, 2019.
[21] 3GPP TR 22.888 V12.0.0. Study on enhancements for Machine-Type Communications (MTC), Mar. 2013.
[22] 3GPP TS 36.300 V14.0.0. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2, Sep. 2016.
[23] 3GPP TS 36.211 V14.0.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation, Sep. 2016.
[24] 3GPP TS 36.321 V14.0.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification, Oct. 2016.
[25] 3GPP TR 37.868 V11.0.0. Study on RAN Improvements for Machine-type Communications, Sep. 2011.
[26] Shao-Yu Lien, Tzu-Huan Liau, Ching-Yueh Kao, and Kwang-Cheng Chen. Cooperative access class barring for machine-to-machine communications. IEEE Transactions on Wireless Communications, 11(1):27-32, Jan. 2012.
[27] Yi-Huai Hsu, Kuochen Wang, and Yu-Chee Tseng. Enhanced cooperative access class barring and traffic adaptive radio resource management for m2m communications over lte-a. In Proc. of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pages 1-6, Oct. 2013.
[28] Jihun Moon and Yujin Lim. Adaptive access class barring for machine-type communications in lte-a. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pages 398-402, July 2016.
[29] Ki-Dong Lee, Sang Kim, and Byung Yi. Throughput comparison of random access methods for m2m service over lte networks. In Proc. of IEEE GLOBECOM
Workshops (GC Wkshps), pages 373-377, Dec. 2011.
[30] G. Foddis, R. G. Garroppo, S. Giordano, G. Procissi, S. Roma, and S. Topazzi. On rach preambles separation between human and machine type communication. In 2016 IEEE International Conference on Communications (ICC), pages 1-6, May 2016.
[31] Xin Jian, Yunjian Jia, Xiaoping Zeng, and Junyi Yang. A novel class-dependent back-off scheme for machine type communication in lte systems. In Proc. of 22nd Wireless and Optical Communication Conference (WOCC), pages 135-140, May. 2013.
[32] D. Aragao, D. Vieira, M. F. de Castro, and Y. Ghamri-Doudane. A dynamic backoff approach to control the congestion in m2m communication over lte networks. In Global Information Infrastructure and Networking Symposium (GIIS), 2015, pages 1-6, Oct 2015.
[33] Jen-Po Cheng, Chia-Han Lee, and Tzu-Ming Lin. Prioritized random access with dynamic access barring for ran overload in 3gpp lte-a networks. In Proc. of IEEE GLOBECOM Workshops (GC Wkshps), pages 368-372, Dec. 2011.
[34] Ahmed Amokrane, Adlen Ksentini, Yassine Hadjadj-Aoul, and Tarik Taleb. Congestion control for machine type communications. In Proc. of IEEE International Conference on Communications (ICC), pages 778-782, Jun. 2012.
[35] Antonio Visioli. Practical PID control. Springer-Verlag Editor, 2006.
[36] B. Barakat and K. Arshad. Energy efficient scheduling in lte-advanced for machine type communication. In 2015 International Conference and Workshop on Computing and Communication (IEMCON), pages 1-5, Oct 2015.
[37] M. Bagaa, A. Ksentini, T. Taleb, R. Jantti, A. Chelli, and I. Balasingham. An efficient d2d-based strategies for machine type communications in 5g mobile systems. In 2016 IEEE Wireless Communications and Networking Conference, pages 1-6, April 2016.
[38] M. Condoluci, L. Militano, A. Orsino, J. Alonso-Zarate, and G. Araniti. Lte-direct vs. wifi-direct for machine-type communications over lte-a systems. In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 2298-2302, Aug 2015.
[39] Ang-Hsun Tsai, Li-Chun Wang, Jane-Hwa Huang, and Tzu-Ming Lin. Overload control for machine type communications with femtocells. In Proc. of IEEE Vehicular Technology Conference (VTC Fall), pages 1-5, Sep. 2012.
[40] A. Herutomo, M. Abdurohman, N. A. Suwastika, S. Prabowo, and C. W. Wijiutomo. Forest fire detection system reliability test using wireless sensor network and openmtc communication platform. In 2015 3rd International Conference on Information and Communication Technology (ICoICT), pages 87-91, May 2015.
[41] Arduino UNO Technical Specs. https://www.arduino.cc/en/Main/ ArduinoBoardUno.
[42] Ieee standard for low-rate wireless networks. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pages 1-709, April 2016.
[43] R1-061369. LTE random-access capacity and collision probability, May. 2006.
[44] C. Buratti. Performance analysis of ieee 802.15.4 beacon-enabled mode. IEEE Transactions on Vehicular Technology, 59(4):2031-2045, May 2010.
[45] Hung-Wei Kao, You-Huei Ju, and Meng-Hsun Tsai. Two-stage radio access for group-based machine type communication in lte-a. In Communications (ICC), 2015 IEEE International Conference on, pages 3825-3830, June 2015.
[46] Ray-Guang Cheng, Chia-Hung Wei, Shiao-Li Tsao, and Fang-Ching Ren. Rach collision probability for machine-type communications. In Proc. of IEEE Vehicular Technology Conference (VTC Spring), pages 1-5, May 2012.
[47] Qualcomm Technologies, Inc. LTE MTC: Optimizing LTE Advanced for MachineType Communications, Nov. 2014.
[48] Texas Instruments. Measuring the Power Consumption on CC2530ZNP 373 Using CC2530 ZNP Mini Kit, 2011.
[49] M. Gerasimenko, V. Petrov, O. Galinina, S. Andreev, and Y. Koucheryavy. Energy and delay analysis of lte-advanced rach performance under mtc overload. In 2012 IEEE Globecom Workshops, pages 1632-1637, Dec 2012.
[50] Institute for Information Industry. Consumer Behavior Research of the rst half of 2014. http://www.iii.org.tw/Press/NewsDtl.aspx?fm_sqno=14&nsp_
sqno=1367.
[51] National Development Council. Personal and Household Digital Opportunity Survey in 2014. http://www.ndc.gov.tw/m1.aspx?sNo=0028380#.VactLfmqpBc.
[52] iPass Inc. iPass Wi-Fi Surveys and Reports. http://www.ipass.com/ mobile-resources-surveys/.
[53] IEEE Standards Association et al. IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE, 2001.
[54] Jin Teng, Changqing Xu, Weijia Jia, and Dong Xuan. D-scan: Enabling fast and smooth handoffs in ap-dense 802.11 wireless networks. In INFOCOM 2009, IEEE, pages 2616-2620. IEEE, 2009.
[55] Haitao Wu, Kun Tan, Yongguang Zhang, and Qian Zhang. Proactive scan: Fast handoff with smart triggers for 802.11 wireless lan. In INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pages 749-757. IEEE, 2007.
[56] Ioannis Papanikos and Michael Logothetis. A study on dynamic load balance for ieee 802.11 b wireless lan. In Proc. COMCON, volume 2001. Citeseer, 2001.
[57] Anand Balachandran, Paramvir Bahl, and Geoffrey M Voelker. Hot-spot congestion relief in public-area wireless networks. In Mobile Computing Systems and Applications, 2002. Proceedings Fourth IEEE Workshop on, pages 70-80. IEEE, 2002.
[58] Yigal Bejerano, Seung-Jae Han, and Li Erran Li. Fairness and load balancing in wireless lans using association control. In Proceedings of the 10th annual international conference on Mobile computing and networking, pages 315-329. ACM, 2004.
[59] Paramvir Bahl, Mohammad Taghi Hajiaghayi, Kamal Jain, Sayyed Vahab Mirrokni, Lili Qiu, and Amin Saberi. Cell breathing in wireless lans: Algorithms and evaluation. Mobile Computing, IEEE Transactions on, 6(2):164-178, 2007.
[60] Yigal Bejerano and Seung-Jae Han. Cell breathing techniques for load balancing in wireless lans. Mobile Computing, IEEE Transactions on, 8(6):735-749, 2009.
[61] Gergely V Zaruba, Manfred Huber, FA Kamangar, and Imrich Chlamtac. Indoor location tracking using rssi readings from a single wi-fi access point. Wireless networks, 13(2):221-235, 2007.
[62] J Rosenberg, H Schulzrinne, G Camarillo, A Johnston, J Peterson, R Sparks, M Handley, and E Schooler. Rfc 3261: Sip: Session initiation protocol, 2010.
[63] National Development Council (2017). 2016 mobile phone users' digital opportunity survey (ae080003). [data file]. Available from Survey Research Data Archive, Academia Sinica. DOI:10.6141/TW-SRDA-AE080003-1.
[64] Taiwan Network Information Center. A survey on broadband internet usage in taiwan, Jul. 2017. [Online]. Available: https://www.twnic.net.tw/doc/twrp/20170721d.pdf.
[65] Big Data Research. Report on marketing survey of voip applications in china (2nd quarter in 2017), Jun. 2017. [Online]. Available: http://www.bigdata-research.cn/content/201707/535.html.
[66] L. Zou, A. Javed, and G. Muntean. Smart mobile device power consumption measurement for video streaming in wireless environments: Wifi vs. lte. In 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pages 1-6, June 2017.
[67] Android. The developer's guide - perform network operations. https://developer.android.com/training/basics/network-ops/.
[68] Gonzalo Camarillo, Christer Holmberg, and Yang Gao. Re-invite and targetrefresh request handling in the session initiation protocol (sip). Technical report, 2011. RFC 6141.
[69] Xiaohuan Yan, Y. Ahmet Sekercioglu, and Sathya Narayanan. A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless networks. Computer Networks, 54(11):1848 - 1863, 2010.
[70] Meriem Kassar, Brigitte Kervella, and Guy Pujolle. An overview of vertical handover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10):2607 - 2620, 2008.
[71] Riaz Hussain, Shahzad A Malik, Shafayat Abrar, Raja A Riaz, Hassan Ahmed, and Shahid A Khan. Vertical handover necessity estimation based on a new dwell time prediction model for minimizing unnecessary handovers to a wlan cell. Wireless personal communications, 71(2):1217-1230, 2013.
[72] Jorg Ott and Lu Xiaojun. Disconnection tolerance for sip-based real-time media sessions. In Proceedings of the 6th International Conference on Mobile and Ubiquitous Multimedia, MUM '07, pages 14-23, New York, NY, USA, 2007. ACM.
[73] Javier Ramirez, Juan Manuel Gorriz, and Jose Carlos Segura. Voice activity detection. fundamentals and speech recognition system robustness. In Robust speech recognition and understanding. IntechOpen, 2007.
[74] Wenyu Jiang and H. Schulzrinne. Analysis of on-off patterns in voip and their effect on voice traffic aggregation. In Proceedings Ninth International Conference on Computer Communications and Networks (Cat.No.00EX440), pages 82-87, Oct 2000.
[75] R Venkatesha Prasad, Abhijeet Sangwan, HS Jamadagni, MC Chiranth, Rahul Sah, and Vishal Gaurav. Comparison of voice activity detection algorithms for voip. In Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications, pages 530-535. IEEE, 2002.
[76] ETSI. Universal Mobile Telecommunications System (UMTS); Selection procedures for the choice of radio transmission technologies of the UMTS (UMTS 30.03 version 3.2.0), 1998-04.
[77] H.-L. Fu, P. Lin, and Y.-B. Lin. Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8):1587-1597, Aug 2013.
[78] C.-P. Lee and P. Lin. Modeling delay timer algorithm for handover reduction in heterogeneous radio access networks. IEEE Transactions on Wireless Communications, 16(2):1144-1156, Feb 2017.
[79] Yi-Bing Lin and Phone Lin. Performance modeling of location tracking systems. SIGMOBILE Mob. Comput. Commun. Rev., 2(3):24-27, July 1998.
[80] Sok-Ian Sou and Yi-Ting Peng. Performance modeling for multipath mobile data offoading in cellular/wi-fi networks. IEEE Transactions on Communications, 65(9):3863-3875, 2017.
[81] Madhavan Vajapeyam Ozcan Ozturk. Performance of volte and data traffic in lte heterogeneous networks. 2013.
[82] Johan Sjoberg, Magnus Westerlund, Ari Lakaniemi, and Qiaobing Xie. Rtp payload format and file storage format for the adaptive multi-rate (amr) and adaptive multi-rate wideband (amr-wb) audio codecs. Technical report, 2007.
[83] 3GPP TS 23.203 V15.4.0. IR.36 - Adaptive Multirate Wide Band, Sep 2014.
[84] Higuchi Yuichi. Atama no ii hito wa mijikaku tsutaeru [Four lines Method]. Daiwashobo, Tokyo, 2011. [in Japanese].
[85] Bradley Mitchell. The Range of a Typical WiFi Network, 2018-02.
[86] Jung-Charng Lin. The physiological effects of walking, Apr 2000. [Online]. Available: http://www.epsport.idv.tw/epsport/week/show.asp?repno=52 [in Chinese].
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top