|
[1] D. Szeliski and R. Scharstein, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Inter. J. of Comput. Vision, vol. 47, pp. 7-42, 2002.
[2] L. Nalpantidis, G. C. Sirakoulis, and A. Gasteratos, Review of stereo vision algorithms: from software to hardware, Inter. J. of Optomechatronics, vol. 2, no. 4, pp. 435-462, 2008.
[3] L. F. S. Cambuim, J. P. F. Barbosa, and E. N. S. Barros, “Hardware module for low-resource and real-time stereo vision engine using semi-global matching approach,“ in Proc. SBCCI, pp. 53–58, Aug./Sep. 2017.
[4] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, Real-time stereo vision system using semi-global matching disparity estimation: Architecture and fpga-implementation, in ICSAMOS, 2010, pp. 93-101.
[5] K.-J. Yoon and I.-S. Kweon, “Adaptive Support-Weight Approach for Correspondence Search,IEEE Trans. Pattern Matching and Machine Intelligence,vol. 28, no. 4, pp. 650-656, Apr. 2006.
[6] F. Tombari, S. Mattoccia, and L. D. Stefano, “Segmentation based adaptive support for accurate stereo correspondence, in Proc. Pacific-Rim Symp. Image Video Technol., pp. 427–438, Jun. 2006.
[7] N. Chang, T. Tsai, B. Hsu, Y. Chen, and T. Chang, Algorithm and Architecture of Disparity Estimation With Mini-Census Adaptive Support Weight, IEEE Trans. on CSVT, vol. 20, no. 6, pp. 792-805, 2010.
[8] J. Ding et al., Real-time stereo vision system using adaptive weight cost aggregation approach, EURASIP JIVP, 2011.
[9] S. Perri, P. Corsonello, and G. Cocorullo, Adaptive Census Transform: A novel hardware-oriented stereovision algorithm, Computer Vision and Image Understanding, vol. 117, no. 1, pp. 29-41, January 2013.
[10] Kaiming He, Jian Sun, and Xiaoou Tang, Guided Image Filtering, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397-1409, 2013.
[11] A. Hosni, M. Bleyer, C. Rhemann, M. Gelautz, and C. Rother,“Real-time local stereo matching using guided image filtering, inProc. IEEE Int. Conf. Multimedia Expo, pp. 1–6, 2011.
[12] C. Ttofis and T. Theocharides, “High-quality real-time hardware stereo matching based on guided image filtering, inProc. Des.,Autom. Test Eur. Conf. Exhib., pp. 1–6, 24-28 Mar. 2014.
[13] C. Ttofis, C. Kyrkou, and T. Theocharides, “A low-cost real-timeembedded stereo vision system for accurate disparity estimation basedon guided image filtering,IEEE Trans. Comput., vol. 65, no. 9,pp. 2678–2693, Sep. 2016. [14] C.K. Vala, K. Immadisetty, A. Acharyya, C. Leech, V. Balagopal, G.V. Merrett, & B.M. Al-Hashimi, “High-speed low-complexity guided image filtering-based disparity estimation, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, Issue 2, pp.606–617, 2018.
[15] B. Salehian and A. M. Fotouhi, “Dynamic programming-based dense stereo matching improvement using an efficient search space reduction technique, in Optik, vol. 160, pp.1-12, 2018
[16] J. Sun,H.Y. Shum,and N.N.Zheng, “Stereo matching using belief propagation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787-800,July 2003.
[17] P. F. Felzenszwalb and D.P. Huttenlocher, “Efcient belief propagation for early vision, In IEEE Conference on Computer Vision and Pattern Recognition, 2004.
[18] T. Taniai, Y. Matsushita, and T. Naemura, “Graph Cut Based Continuous Stereo Matching Using Locally Shared Labels, In IEEE Conference on Computer Vision and Pattern Recog-nition, pages 1613–1620, 2014. [19] X. Huang, C. Yuan, and J. Zhang, “Graph cuts stereo matching based on patch-match and ground control points constraint, In Advances in Multimedia Information Processing–PCM 2015, pages 14–23. Springer,2015.
[20] K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 650–656, 2006. [21] Kaiming He, Jian Sun, and Xiaoou Tang, “Guided Image Filtering, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397-1409, 2013.
[22] S. A. Fahmy, P. Y. K. Cheung, and W. Luk, “Novel fpga-based implementation of median and weighted median filtersfor image processing. In Proc. of the 2005 Int. Conf. on Field Programmable Logic and Applications (FPL). IEEE,pp. 142–147, 2005.
[23] L. A. Aranda, P. Reviriego, and J. A. MaestroError, “detection technique for a median filter IEEE Trans. Nuclear Sci., vol. 64, no. 8, pp. 2219–2226,Aug. 2017.
[24] J. Ding, J. Liu, W. Zhou, H. Yu, Y. Wang, and X. Gong, “Real-timestereo vision system using adaptive weight cost aggregation approach,EURASIP J. Image Video Process., vol. 2011, no. 1, p. 20, 2011.
[25] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, “Real-time high-quality stereo vision system in FPGA,IEEE Trans. Circuits Syst. VideoTechnol., vol. 25, no. 10, pp. 1696–1708, Oct. 2015.
[26] M. Jin and T. Maruyama, “Fast and accurate stereo vision system on FPGA,ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 1, p. 3,2014.
[27] Y. Shan et al., “Hardware acceleration for an accurate stereo vision sys-tem using mini-census adaptive support region,ACM Trans. EmbeddedComput. Syst., vol. 13, no. 4s, 2014, Art. no. 132.
[28] L. Zhang, K. Zhang, T. S. Chang, G. Lafruit, G. K. Kuzmanov, andD. Verkest, “Real-time high-definition stereo matching on FPGA, inProc. 19th ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2011,pp. 55–64.
[29] S. Jin et al., “FPGA design and implementation of a real-time stereo vision system,IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 1,pp. 15–26, Jan. 2010.
|