|
Bate, A, & Evans, S. J. W. (2009). Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiology drug safety, 18(6), 427-436. Beijer, H. J. M. , & De Blaey, C. J. (2002). Hospitalisations caused by adverse drug reactions (ADR): a meta-analysis of observational studies. Pharmacy World Science, 24(2), 46-54. British Medical Association. (2006). Reporting adverse drug reactions: a guide for healthcare professionals. In Reporting adverse drug reactions: a guide for healthcare professionals: BMA. Chalapathy, R., Menon, A. K., & Chawla, S. (2018). Anomaly Detection using One-Class Neural Networks. arXiv preprint arXiv:1802.06360. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys, 41(3), 15. Chiu, B., Crichton, G., Korhonen, A., & Pyysalo, S. (2016). How to train good word embeddings for biomedical NLP. Paper presented at the Proceedings of the 15th workshop on biomedical natural language processing. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Hajjar, E. R., Cafiero, A. C., & Hanlon, J. T. (2007). Polypharmacy in elderly patients. The American journal of geriatric pharmacotherapy, 5(4), 345-351. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier. Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188. Khan, S. S., & Madden, M. G. (2009). A survey of recent trends in one class classification. Paper presented at the Irish conference on artificial intelligence and cognitive science. Khan, S. S., & Madden, M. G. (2014). One-class classification: taxonomy of study and review of techniques. The Knowledge Engineering Review, 29(3), 345-374. Kingma, D. P., & Ba, J.(2014). Adam: A method for stochastic optimization. Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 8(1), 98-113. Liou, C. Y., Cheng, W. C., Liou, J. W., & Liou, D. R. (2014). Autoencoder for words. Neurocomputing, 139, 84-96. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:.1301.3781. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Paper presented at the Advances in neural information processing systems. Mohammad, S., & Hirst, G. (2006). Distributional measures of concept-distance: A task-oriented evaluation. Paper presented at the Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes. https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf Ruff, L., Görnitz, N., Deecke, L., Siddiqui, S. A., Vandermeulen, R., Binder, A., Kloft, M. (2018). Deep one-class classification. In International Conference on Machine Learning, pages 4390–4399, 2018a. Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Disability Studies, 20, 33-53. Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Journal of Neural computation, 13(7), 1443-1471. Schatz, S., & Weber, R. (2015). Adverse drug reactions. Pharmacy Practice. Schlkopf, B., Williamson, R., Smola, A., Shawe Taylor, J., & Platt, J. (1999). Support vector method for novelty detection. Paper presented at the Proceedings of the 12th International Conference on Neural Information Processing Systems, Denver, CO. Schnabel, T., Labutov, I., Mimno, D., & Joachims, T. (2015). Evaluation methods for unsupervised word embeddings. Paper presented at the Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Shao, Y., Hardmeier, C., Tiedemann, J., & Nivre, J. (2017). Character-based joint segmentation and POS tagging for Chinese using bidirectional RNN-CRF. arXiv preprint arXiv:.1704.01314. Sharir, O., Tamari, R., Cohen, N. , & Shashua, A. (2016). Tensorial mixture models. Arxiv preprint arxiv:1610.04167. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014). Learning sentiment-specific word embedding for twitter sentiment classification. Paper presented at the Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Tax, D.M.J., & Duin, R.P.W. (2001). Uniform object generation for optimizing one-class classifiers. Journal of machine learning research, 2(Dec), 155-173. Tax, D.M.J., & Duin, R.PW. (2004). Support vector data description. Machine learning, 54(1), 45-66. Wang, Q.H., Lopes, L. S., & Tax, D.M.J. (2004). Visual object recognition through one-class learning. Paper presented at the International Conference Image Analysis and Recognition. Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L.W., Shen, F., Liu, H.F. (2018). A comparison of word embeddings for the biomedical natural language processing. Journal of biomedical informatics, 87, 12-20. World Health Organization. (2002). Safety of medicines: a guide to detecting and reporting adverse drug reactions: why health professionals need to take action. Retrieved from https://apps.who.int/iris/handle/10665/67378 Yang, C. C., Yang, H.D., Jiang, L., & Zhang, M. (2012). Social media mining for drug safety signal detection. Paper presented at the Proceedings of the 2012 international workshop on Smart health and wellbeing. Yih, W. T., He, X.D., & Meek, C. (2014). Semantic parsing for single-relation question answering. Paper presented at the The 52nd Annual Meeting of the Association for Computational Linguistics Baltimore. Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:.1301.3557.
|