[1]L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, vol. 108, no. 1-2, pp. 80-86, 2011.
[2]L. Li, R. Chen, F. Sun, F. Wu, and J. Liu, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometallurgy, vol. 108, no. 3-4, pp. 220-225, 2011.
[3]X. Zeng, J. Li, and Y. Ren, Prediction of various discarded lithium batteries in China, in IEEE International Symposium on Sustainable Systems and Technology (ISSST), 2012, pp. 1-4
[4]P. Meshram, B. Pandey, and T. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chemical Engineering Journal, vol. 281, pp. 418-427, 2015.
[5]A. Nayl, R. Elkhashab, S. M. Badawy, and M. El-Khateeb, Acid leaching of mixed spent Li-ion batteries, Arabian Journal of Chemistry, vol. 10, pp. S3632-S3639, 2017.
[6]H. Wen zhi et al., Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation, Transactions of Nonferrous Metals Society of China, vol. 22, no. 9, pp. 2274-2281, 2012.
[7]A. Nayl, M. M. Hamed, and S. Rizk, Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries, Journal of the Taiwan Institute of Chemical Engineers, vol. 55, pp. 119-125, 2015.
[8]許荏賓, 溶劑萃取分離廢二次鋰電池有價金屬, 朝陽科技大學環境工程與管理系學位論文, pp. 1-78, 2016.
[9]鄭如翔和黃炳照, 鋰離子電池正極材料之發展, 化工, vol. 58, no. 5, pp. 10-39, 2011.
[10]B. L. Ellis, K. T. Lee, and L. F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chemistry of materials, vol. 22, no. 3, pp. 691-714, 2010.
[11]X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag, vol. 38, pp. 349-56, Apr 2015.
[12]林月微, 高性能電池正極材料介紹, 工業材料, vol. 157, p. 153, 2000.
[13]劉如熹, 鋰離子二次電池材料簡介, 化學, vol. 57, no. 2, pp. 149-150, 1999.
[14]V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, vol. 4, no. 9, pp. 3243-3262, 2011.
[15]O. E. Bankole, C. Gong, and L. Lei, Battery recycling technologies: Recycling waste lithium ion batteries with the impact on the environment in-view, Journal of Environment and Ecology, vol. 4, no. 1, pp. 14-28, 2013.
[16]李洪枚和姜亢, 廢舊鋰離子電池對環境污染的分析與對策, 上海環境科學, vol. 23, no. 5, 2004.
[17]何星融, 鋰三元電池廢正極材料有價金屬再生之研究, 國立成功大學資源工程所, 2018.
[18]陳奕瑄, 廢鋰電池中有價金屬資源化研究, 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2018.[19]李洪桂, 濕法冶金學, 中南大學出版社, 2005, pp. 30-35.
[20]國立台灣大學化學系有機教研小組, 大學有機化學實驗 (no. 7). 國立台灣大學出版中心, 2004.
[21]葉子維, 分離廢鋰離子電池中有價金屬之研究,碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2018.[22]蘇英源和郭金國, 冶金學,全華圖書股份有限公司, 2001.
[23]N. Takeno, Atlas of Eh-pH Diagrams, Intercomparison of Thermodynamic Databases., National Institute of Advanced Industrial Science and Technology, no. 419, 2005.
[24]J. Ortiz-Landeros, C. Gómez-Yáñez, R. López-Juárez, I. Dávalos-Velasco, and H. Pfeiffer, Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods, Journal of Advanced Ceramics, vol. 1, no. 3, pp. 204-220, 2012.
[25]C. D. Tsakiroglou, K. Hajdu, K. Terzi, C. Aggelopoulos, and M. Theodoropoulou, A statistical shrinking core model to estimate the overall dechlorination rate of PCE by an assemblage of zero-valent iron nanoparticles, Chemical Engineering Science, vol. 167, pp. 191-203, 2017.
[26]V. Safari, G. Arzpeyma, F. Rashchi, and N. Mostoufi, A shrinking particle—shrinking core model for leaching of a zinc ore containing silica, International journal of mineral processing, vol. 93, no. 1, pp. 79-83, 2009.
[27]C. Dickinson and G. Heal, Solid–liquid diffusion controlled rate equations, Thermochimica Acta, vol. 340, pp. 89-103, 1999.
[28]H.-l. SUN, H.-y. YU, B. WANG, Y. MIAO, G.-f. TU, and S.-w. BI, Leaching dynamics of 12CaO· 7Al 2 O 3, The Chinese Journal of Nonferrous Metals, vol. 18, no. 10, pp. 1920-1925, 2008.
[29]D. Dutta et al., Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries, Separation and Purification Technology, vol. 200, pp. 327-334, 2018.
[30]L. Li et al., Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste Manag, vol. 71, pp. 362-371, Jan 2018.
[31]S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, and Y. H. Kim, Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, vol. 79, no. 3-4, pp. 172-181, 2005.
[32]B. Swain, J. Jeong, J.-c. Lee, G.-H. Lee, and J.-S. Sohn, Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, Journal of Power Sources, vol. 167, no. 2, pp. 536-544, 2007.
[33]J. Nan, D. Han, M. Yang, M. Cui, and X. Hou, Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries, Hydrometallurgy, vol. 84, no. 1-2, pp. 75-80, 2006.
[34]R.-C. Wang, Y.-C. Lin, and S.-H. Wu, A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries, Hydrometallurgy, vol. 99, no. 3-4, pp. 194-201, 2009.
[35]P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, and K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, vol. 47, no. 2-3, pp. 259-271, 1998.
[36]M. Contestabile, S. Panero, and B. Scrosati, A laboratory-scale lithium-ion battery recycling process, Journal of Power Sources, vol. 92, no. 1-2, pp. 65-69, 2001.
[37]S. Castillo, F. Ansart, C. Laberty-Robert, and J. Portal, Advances in the recovering of spent lithium battery compounds, Journal of Power Sources, vol. 112, no. 1, pp. 247-254, 2002.
[38]C. K. Lee and K.-I. Rhee, Preparation of LiCoO2 from spent lithium-ion batteries, Journal of Power Sources, vol. 109, no. 1, pp. 17-21, 2002.
[39]C. K. Lee and K.-I. Rhee, Reductive leaching of cathodic active materials from lithium ion battery wastes, Hydrometallurgy, vol. 68, no. 1-3, pp. 5-10, 2003.
[40]K.-L. Chiu and W.-S. Chen, Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange, Science of Advanced Materials, vol. 9, no. 12, pp. 2155-2160, 2017.
[41]F. Mendes and A. Martins, Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption, International Journal of Mineral Processing, vol. 77, no. 1, pp. 53-63, 2005.
[42]Z. Zainol and M. J. Nicol, Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748, Hydrometallurgy, vol. 99, no. 3-4, pp. 175-180, 2009.
[43]Y. Song and Z. Zhao, Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques, Separation and Purification Technology, vol. 206, pp. 335-342, 2018.