跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志謙
研究生(外文):Chih-ChienLin
論文名稱:台灣濁水溪沖積扇乾旱狀態評估及其地下水管理水位建置之研究
論文名稱(外文):Drought Status Assessment of Groundwater Level and Establishment of Groundwater Management Level in Zhuoshui River Alluvial Fan,Taiwan
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:138
中文關鍵詞:濁水溪沖積扇SGIMann-Kendall檢定法地下水管理線枯旱度最低水位預測
外文關鍵詞:Zhuoshui River Alluvial FanStandardized Groundwater IndexMann-Kendall TestDaily Groundwater Level RecordsGroundwater Management Level
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  全球氣候變遷導致降雨型態改變,極端的降雨強度變化導致台灣枯旱程度嚴重加劇,在地表水的供不應求的期間,地下水資源的開發就變得十分的重要。本研究著眼於台灣中部濁水溪沖積扇的地下水庫,分析1999到2017年間第1及第2含水層觀測站的地下水位歷線,指出歷史中地下水位相對枯旱的期間與強度,目的是了解本區地下水枯旱狀態的時間分布特性,提供未來地下水管理保育工作的研究基礎。
  首先,本研究應用標準化地下水位指數法(SGI),分別使用SGI180歷線與SGI360歷線,評估半年尺度與一年尺度下的地下水位相對強度變化。(1)半年尺度的評估下,第1含水層呈現穩定的豐枯水季交替,第2含水層則在2013、2014及2016年出現無枯水季的現象(2)一年尺度的評估下,最嚴重的枯旱現象出現在2002~2004,此期間第1到第2含水層都出現連續3年的枯水延時,而地層越往下,近年的枯旱訊號則越趨微弱。
  其次,應用Mann-Kendall趨勢檢定法,將第1及第2含水層在研究時間1999到2017年間各地下水位歷線的趨勢分為顯著正趨勢(z≥1.96)、顯著負趨勢(z≤-1.96)及無顯著趨勢(1.96〉z〉-1.96)三者,分析含水層枯旱變動趨勢,顯示第1含水層受地表氣候及人為用水影響,在雲林的扇央和扇尾區域呈現明顯的負趨勢;而往下到第2含水層,因此地層為受壓含水層,只有扇頂補注區因直接受到地表氣候影響而呈現負趨勢。
  接著利用SGI指標的出現機率訂定枯旱度的等級,搭配趨勢檢定的結果,建立(1)單一標準地下水管理線:選擇SGI資料累積分布函數90%、70%、50%、30%與10%出現機率對應豐水、多水、有水、輕度乾旱、中度乾旱與重度乾旱,利用色塊圖顯示枯旱狀態,了解即時枯旱狀態的空間分布。(2)日水位超越機率地下水管理線:改良水利署的月平均水位管理線,以過去日水位資料計算每一天的超越機率值,建立安全水位、下限水位與嚴重下限水位歷線,提供合適的枯旱預警機制。(3)移動式平均地下水管理線:以6月1日起始到隔年5月31日結束為一完整消退循環,以枯旱度篩選經歷年份,將豐水年到枯水年間建立10個級距,藉以觀測各測站在豐枯水年的豐枯水季地下水位變動的狀態。
  最後,本研究發現研究區域地下水測站,其每年最高地下水位與水位消退到最低水位的差值呈現良好的線性相關,利用歷年資料建立的線性方程式預測各測站的最低水位。研究顯示濁水溪沖積扇上的地下水位測站整體測站之最高水位與其消退差間的相關係數呈現良好的相關性,消退預測的方均根誤差皆小於1公尺,預測結果十分良好。
Groundwater resources have been well exploited in Zhuoshui River Alluvial Fan area for a long history, and is considered to be a vital source of water supply during dry seasons of each year. Variation in precipitation patterns has caused many extreme events in recent decades as well as impacts on groundwater recharge characteristics owing to global climate change. Further studies of historical groundwater records should be taken to meet
the need of better groundwater management strategies for the future.

In the present study, Zhuoshui River Alluvial Fan is chosen as study area. Daily groundwater level monitoring records during 1999 and 2017 from 37 stations on this area are investigated in order to assess the overall groundwater level response to natural
drought phenomena.

Firstly, groundwater level records from each of the stations are analyzed to detect groundwater drought events in short and long time scale using the Standardized Groundwater Index (SGI) method. Two SGI indictor, SGI180 and SGI360, time series are estimated form data composed with daily groundwater level accumulative sum for an
accumulation period of 180 days and 360 days separately.

Secondly, trend of groundwater level during study period of 37 stations are evaluated with Mann-Kendall test, and establishing standards for groundwater management levels.

Finally, this study uses a groundwater level regression curve with a linear equation between the highest water level and the water level difference to predict the future minimum water level. Wutu station are chosen to build model and the effectiveness of
model are tested.
中英文摘要 II
致謝 VIII
目錄 IX
圖目錄 XI
表目錄 XIV
第一章 前言
1.1研究動機 1
1.2研究流程與論文架構 5
第二章 文獻回顧
2.1乾旱研究
2.1.1全球乾旱研究 7
2.1.2地下水乾旱研究 9
2.2研究區域
2.2.1區域範圍 11
2.2.2地形與地質 11
2.2.3地表水體與河川分布 15
2.3水文地質構造
2.3.1水文地質特性概述 16
2.3.2地下水含水層分層 17
第三章 研究方法
3.1研究資料選取 19
3.2標準化地下水位指數法 25
3.3 Mann-Kendall趨勢檢定法檢定法 27
3.4枯旱度評估 29
3.5地下水管理線的建置 33
第四章 研究結果
4.1枯旱度評估結果
4.1.1 第1含水層枯旱分析 36
4.1.2 第2-1含水層枯旱分析 43
4.1.3 第2-2含水層枯旱分析 46
4.1.4含水層中位數分析結果 49
4.1.5含水層分析結論 52
4.2 Mann-Kendall趨勢檢定法結果 53
4.3地下水管理線的建置結果
4.3.1單一標準地下水管理線 56
4.3.2日水位超越機率地下水管理線 61
4.3.3移動式平均地下水管理線 63
4.4最低地下水位預測 73
第五章 結論與建議
5.1 結論 78
5.2 建議 80
參考文獻 81
附錄一:研究測站水位歷線、SGI180歷線與SGI360歷線圖 87
AMS, 2004. Statement on meteorological drought, Bull, American Meteorological Society, 85, pp.771-773.
Amirataee, B., Montaseri, M. and Sanikhani, H., 2016. The analysis of trend variations of reference evapotranspiration via eliminating the significance effect of all autocorrelation coefficients, Theoretical and Applied Climatology, 126, pp.131-139.
Bloomfield, J.P. and Marchant, B.P., 2013. Analysis of groundwater drought building on the standardised precipitation index approach, Hydrology and Earth System Sciences, 17, pp.4769-4787.
Bąk and Kubiak-Wójcicka, 2017 B. Bąk, K. Kubiak-WójcickaImpact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015 J. Water L. Dev., 32 (2017)
Calow R., Robins, N., Macdonald, A. and Nicol, A., 1999. Planning for groundwater drought in Africa. In: Proceedings of the International Conference on Integrated Drought Management: Lessons for Sub-Saharan Africa. IHP-V, Technical Documents in Hydrology, 35, pp. 255-270
Chen H., Guo S., Xu C.Y., and Singh, V.P., 2007. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin, J Hydrol , 344, 171–184..
Dai A., 2011. Drought under global warming: a review, Wiley Interdiscip Rev Clim Change 2011, 2, pp.45-65.
Eltahir, E.A.B. and Yeh, P.J.F., 1999. On the asymmetric response of aquifer water level to floods and droughts in Illinois, Water Resour. Res., 35(4), pp.1199-1217.
Hughes et al., 2012 J.D.Hughes,K.C.Petrone,R.C.Silberste Drought groundwater storage and stream flow decline in southwestern Australia J. Geophys. Res. Lett.,39(2012), p.L03408
IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press.
John D. Milliman and James P. M. Syvitski, 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
Kemdall, M.G., 1975. Rank correlation methods, Charles Griffin, London.
Lloyd-Hughes, B. and Saunders, M.A., 2002. A drought climatology for Europe, Int. J. Climatol., 22, 1571–1592.
Lorenzo-Lacruz et al., 2013 J. Lorenzo-Lacruz, S. Vicente-Serrano, J. González-Hidalgo, J.López-Moreno, N. CortesiHydrological drought response to meteorological drought in the Iberian Peninsula Clim. Res., 58 (2013), pp. 117-131
Mann, H.B., 1945. Non-parametric test against trend, Econometrica, 13, pp.245-259.
McKee, T.B., Doesken, N.J. and Leist, J., 1993. The relationship of drought frequency and duration time scales, 8th Conference on Applied Climatology, 17–22 January 1993, Anaheim, California, pp.179-184.
Mishra, A.K. and Singh V.P., 2010. A review of drought concepts, J Hydrol, 391, pp.202-216.
Medellin-Azuara et al., 2015 J.Medellin-Azuara, D.MacEwan, R.E.Howitt, G.Koruakos, E.C.Dogrul, C.F.Brush, T.N.Kadir, T.Harter, F.Melton, J.R.Lund Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA Hydrogeol. J.,23(2015), pp.1205-1216
Nalbantis, I., 2008. Evaluation of a Hydrological Drought Index, European Water, 23(24), pp.67-77.
Palmer, W.C., 1965. Meteorologic Drought. US Department of Commerce, Weather Bureau, Research Paper No.45, pp.58.
Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21, pp.156-161.
Shafer, B.A. and Dezman, L.E., 1982. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In: Preprints, Western SnowConf., Reno, NV, Colorado State University, pp.164-175.
Shahid and Hazarika, 2010 S.Shahid,M.K.HazarikaGroundwater drought in the northwestern districts of BangladeshWater Resour. Manage.,24(2010), pp.1989-2006
Simon J.Dadson, 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogeny, Nature 426, pp.648-651.
Sheffield, J. and Wood, E.F., 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 13, pp.79-105.
Sheffield and Wood, 2011 J. Sheffield, E.F. Wood J. Sheffield, E.F. Wood (Eds.), GNHRE, Earthscan, London and Washington DC (2011)
Sheffield, J., Wood, E.F. and Roderick, M.L., 2012. Little change in global drought over the past 60 years, Nature, 491, pp.435-440.
Tallaksen, L.M. and van Lanen, H.A.J., 2004. Hydrological drought Processes and estimation methods for streamflow and groundwater, Developments in Water Sciences 48, Elsevier, the Netherlands.
Tsakiris, G. and Vangelis, H., 2005. Establishing a Drought Index Incorporating Evapotran-spiration. European Water, 9(10), pp.3-11.Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J.Y., Taniguchi, M., Bierkens, M.F.P. MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M., Hiscock, K., Yeh, P.J.F., Holman, I. and Treidel, H., 2013. Ground water and climate change, NATURE CLIMATE CHANGE, 3(4), pp.322-329.
Tijdeman et al., 2018 E. Tijdeman, J. Hannaford, K. StahlHuman influences on streamflow drought characteristics in England and Wales Hydrol. Earth Syst. Sci., 22 (2018), pp. 1051-1064,
van Lanen, H.A.J. and Peters, E., 2000. Definition, effects and assessment of groundwater droughts. In: Vogt, J.V., Somma, F. (Eds.), Drought and Drought Mitigation in Europe. Kluwer Academic Publishers, Dordrecht, pp.49-61.
van Dijk et al., 2013 A.I.K.J.M.van Dijk , H.E.Beck,R.S.Crosbie, R.A.M.deJeu,Y.Y.Liu,G.M.Podger,B.Timbal,N.R.VineyThe millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and societyWater Resour. Res.,49(2013), pp.1040-1057
Van Loon, 2015 A.F.Van LoonHydrological drought explained WIREs Water,2(2015), pp.359-392
Van Lanen et al., 2016 H.A.J.Van Lanen, G.Laaha, D.G.Kingston, T.Gauster, M.Ionita, J.-P.Vidal, R.Vlnas, L.M.Tallaksen, K.Stahl,J. Hannaford, C.Delus, M.Fendekova, L.Mediero, C.Prudhomme, E.Rets,R.J.Romanowicz,S.Gailliez,W.K.Wong,M.-J.Adler, V.Blauhut, L.Caillouet, S.Chelcea, N.Frolova, L.Gudmundsson, M.Hanel, K.Haslinger, M.Kireeva, M.Osuch,E.Sauquet, J.H.Stagge, A.F.Van Loon Hydrology needed to manage droughts: the 2015 European Case Hydrol. Process.,30(2016), pp.3097-3104
Wilhite, D.A. and Glantz, M.H., 1985. Understanding the drought phenomenon: the role of definitions, Water Int, 10, pp.111-120.
Wilhite, D.A., 2000. Drought: A Global Assessment, Vols. 1 and 2. 1, Routledge, New York, pp.89-104 and 2, Routledge, New York, pp.129-448.
Yevjevich, V., 1967. An Objective Approach to Definitions and Investigations of Continental Hydrologic Drought. Hydrology Paper No. 23, Colorado State Univ., Fort Collins, Colo.
Zargar, A., Sadiq, R., Naser B., and Khan F.I., 2011. A review of drought indices, Environmental Reviews, 19(NA), pp.333-349
江崇榮、黃智昭、陳瑞娥、費立沅,2005a,濁水溪沖積扇地下水補注區釐定,第二屆資源工程研討會論文集,92-98。
莊家棋,2018,「應用標準化地下水位指數法評估濁水溪沖積扇地下水水位枯旱狀況之研究」。
經濟部中央地質調查所,1999,「台灣地區地下水觀測網第一期計畫,濁水溪沖積扇水文地質調查研究總報告」。
經濟部水資源局,1999,彙編「台灣地區地下水-濁水溪沖積扇篇」。
經濟部水利署,2007,「濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估」。
經濟部水利署,2014,「濁水溪地下水智慧型預測模式之研究」。
經濟部,2014,「地下水補注地質敏感區劃定計畫書-G0001濁水溪沖積扇」。
經濟部水利署,2016,「臺灣地區乾旱時期地下水備援用水評估系統建置」。
葉信富、張家富、李哲瑋、李振誥,2016a,以標準化地下水與降雨指數法評估高屏溪流域之乾旱特性,中華水土保持學報,第47卷,第1期,45-52。
葉信富、葉振峰、李振誥,2016b,以Mann-Kendall及Theil-Sen檢定法評估臺灣地區長期河川流量時空趨勢變化,第47卷,第2期,73-83。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top