|
丁亞中、官群倫(2012) 物件導向多尺度分割之探討-以裸露地分類為例,中華民國地圖學會會刊,22(2),49-62。 李佳翰(2013),山岳隧道襯砌異狀肇因診斷技術研究,國立臺北科技大學,臺北。 盧家鋒(2013),多變數分析:主成分分析法。國立陽明大學,檢自: http://www.ym.edu.tw/~cflu/MedSigProcess_Class09_CFLu.pdf 黃仲偉、紀乃文、陳北亭、楊元森、林詠彬(2016),影像量測於結構監測之應用。 土木水利,43(1),66-74。 江怡萱(2014),雷射掃描技術於隧道內空變位監測之應用,國立臺灣大學,台北。 經緯航太科技股份有限公司(2018),106 及107 年度發展車載移動測繪系統(MMS)作業-工作總報告 邱顯晉、林金城(2015),3D 雷射掃描應用於鐵路隧道空間資訊與檢測之案例探討,2015 電子計算機於土木水利工程應用研討會,臺中。 蕭牟淵、游本志、王泰典、蕭興臺(2010),台灣公路隧道安全檢測及評估之研究。臺灣公路工程,36(5),25-44。 王泰典、邱雅筑、李佳翰、陳正勳、黃燦輝(2015),從我國岩石隧道檢修經驗探討營運期間結構行為演化及維護管理,土木水利,42(1),14-25。 王慶雄、林蔚然(2015),山區隧道損壞之檢測調查 — 以台20 線嘉寶隧道為例。中國土木水利工程學會,42(1),54-63。 Abdel-Qader, I., Abudayyeh, O., & Kelly, M. E. (2003). Analysis of Edge-Detection Techniques for Crack Identification in Bridges. Journal of Computing in Civil Engineering, 17(4), 255-263. Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation,58,12-23. Balaguer, C.,Montero, R.,Victores, J.G.,Martínez, S., & Jardón, A.,(2014) Towards fully automated tunnel inspection: A survey and future trends. In ISARC.Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications,31,19-33. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004).Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS journal of photogrammetry and remote sensing,58(3-4), 239-258. Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q.,Van der Meer, F., Van der Werff, H., Van Coillie, F. (2014). Geographic object based image analysis–towards a new paradigm. ISPRS journal of photogrammetry and remote sensing, 87, 180- 191. Bose, K., & Kumar Bandyopadhyay, S.(2016). Crack Detection and Classification in Concrete Structure. Journal for Research, 2(4), 29-38. Bramer, M. (2007). Principles of Data Mining. 1sted., 41-50. London:Springer-Verlag. Cha, Y. J., Choi, W., & Buyukozturk, O. (2017). Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378. Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35, 445-453. Dhital, D., & Lee, J. R. (2012). A Fully Non-Contact Ultrasonic Propagation Imaging System for Closed Surface Crack Evaluation. Experimental Mechanics, 52,1111-1122. Drăguţ, L., Csillik, O., Eisank, C., & Tiede, D.(2014). Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS journal of photogrammetry and remote sensing, 88, 119-127. Faroudja, Y. C. (1988). NTSC AND BEYOND. IEEE Transactions on Consumer Electronic, 34(1), 166-178. Fisher, R.B., Perkins, S., Walker, A., & Wolfart, E. (1996). Hypermedia Image Processing Reference. England: John Wiley & Sons Ltd. Haack, A., Schreyer, J., & Jackel, G. (1995). State-of-the-art of Non-destructive Testing Methods for Determining the State of a Tunnel Lining. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 4(10), 413-431. Haralick, R. M., Sternberg, S. R., & Zhuang, X.(1987). Image analysis using mathematical morphology. IEEE transactions on pattern analysis and machine intelligence, (4), 532-550. Han, J.-Y., Guo, J., & Jiang, Y.-S. (2013a).Monitoring tunnel deformations by means of multi-epoch dispersed 3D LiDAR point clouds: An improved approach.Tunnelling and Underground Space Technology, 38, 385-389. Han, J.-Y., Guo, J., & Jiang, Y.-S. (2013b).Monitoring tunnel profile by means of multi-epoch dispersed 3-D LiDAR point clouds. Tunnelling and Underground Space Technology, 33, 186-192. Hay, G. J., & Castilla, G.(2008). Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Blaschke, T., Lang, S.,Hay,G.J., (Eds.), Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications(pp.75-89). London:Springer-Verlag. Heritage, G. L., & Large, A. R. G. (2009). Principles of 3D Laser Scanning. In Heritage, G. L., & Large, A. R. G.(Eds.), Laser Scanning For the Envirormental Sciences(pp.21-34). New Jersey: John Wiley & Sons Ltd. Iyer, S., & Sinha, S. K. (2005). A robust approach for automatic detection and segmentation of cracks in underground pipeline images. Image and Vision Computing, 23(10), 921-933. Kim, M., Warner, T. A., Madden, M., & Atkinson, D. S. (2011). Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects. International Journal of Remote Sensing, 32(10), 2825-2850. Kohavi, R., & Provost, F. (Eds.),(1998). Machine learning: Special issue on application of machine learning and knowledge discovery process. Machine Learning, 30(2/3),271–274. Liu, Z., Suandi, S. A., Ohashi, T., & Ejima, T. (2002). Tunnel crack detection and classification system based on image processing. In Machine Vision Applications in Industrial Inspection X , 4664, pp.145-153. Lee, I. -M., Bae, G. -J., Lee, S. -W., & Lee, J. G. (2004). Soundness Evaluation of a Tunnel Concrete Lining by Using the Hammer Impact-Induced Sound Wave.Key Engineering Materials,270-273, pp.1500-1505. Marques, A. G. C. S., & Correia, P. L. (2012). Automatic road pavement crack detection using SVM. Lisbon, Portugal: Dissertation for the Master of Science Degree in Electrical and Computer Engineering at Instituto Superior Técnico. McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica:Biochemia medica, 22(3), 276-282. Menendez, E., Victores, J. G., Montero, R., Martínez, S., & Balaguer, C. (2018).Tunnel structural inspection and assessment using an autonomous robotic system. Automation in Construction, 87, 117-126. Mohan, A., & Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. Alexandria Engineering Journal, 57(2), 787-798. Murakami, T., Saito, N., Komachi, Y., Michikawa, T., Sakashita, M., Kogure, S.,Kase,K., Wada ,S., & Midorikawa, K. (2018). High spatial resolution LIDAR for detection of cracks on tunnel surfaces. In CLEO: Applications and Technology. Optical Society of America. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Perpixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, 115(5), 1145-1161. Neeraj Bhargava, G.S., Bhargava, R., & Mathuria, M. (2013). Decision Tree Analysis on J48 Algorithm for Data Mining. International Journal of Advanced Research in Computer Science and Software Engineering, 3(6), 1114-1119. Nieniewski, M., Chmielewski, L., Jozwik, A., & Sklodowski, M. (1999).Morphological detection and feature-based classification of cracked cegions in ferrites. Machine Graphics and Vision, 8(4), 699-712. Protopapadakis, E., Makantasis, K., Kopsiaftis, G., Doulami, N., & Amditis, A.(2016). Crack Identification Via User Feedback, Convolutional Neural Networks and Laser Scanners for Tunnel Infrastructures. Imaging and Computer Graphics Theory and Applications, 4, 725-734. Rajan, K. (2005) Materials informatics. Materials Today,8(10), 38-45. Rejaur Rahman, M., & Saha, S. K. (2009). Multi-resolution segmentation for objectbased classification and accuracy assessment of land use/land cover classification using remotely sensed data. Journal of the Indian Society of Remote Sensing, 36(2), 189-201. Richards, J.A. (1998). Inspection, maintenance and repair of tunnels: International lessons and practice. Tunnelling and Underground Space Technology, 13(4),369-375. Rodarmel, C., & Shan, J. (2002). Principal component analysis for hyperspectral image classification.Surveying and Land Information Science, 62(2), 115-122. Silva, W. R. L. D., & Lucena, D. S. D. (2018).Concrete Cracks Detection Based on Deep Learning Image Classification. Proceedings, 2(8), 489. Sinha, S. K., & Fieguth, P. W. (2006). Automated detection of cracks in buried concrete pipe images. Automation in Construction, 15(1), 58-72. Talab, A. M. A., Huang, Z., Xi, F., & HaiMing, L. (2016). Detection crack in image using Otsu method and multiple filtering in image processing techniques.Optik-International Journal for Light and Electron Optics,127(3), 1030-1033. Van Gosliga, R., Lindenbergh, R., & Pfeifer, N.(2006). Deformation analysis of a bored tunnel bored tunnel by means of terrestaial laser scanning. Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med, 37(5), 360-363. Wang, B., Li, Y., Zhao, W., Zhang, Z., Zhang, Y., & Wang, Z. (2019). Effective Crack Damage Detection Using Multilayer Sparse Feature Representation and Incremental Extreme Learning Machine. Applied Sciences, 9(3), 614. Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview.ISPRS Journal of photogrammetry and remote sensing, 54(2-3), 68-82. Wei, S., Chao, Z., Yang, J. Y., Wu, H. G.,Chen,M. J., Yue, A. Z.,Zhang, Y. N.,Sun,Chongli. (2010). Knowledge-based object oriented land cover classification using SPOT5 imagery in forest-agriculture ecotones. Sensor Letters, 8(1), 22-31. Yoon, J. S., Sagong, M., & Lee, J. S. (2007). Development of damage detection method on the tunnel lining from the laser scanning data. In Proceedings of the World Tunnel Congress 2007 and 33rd ITA/AITES Annual General Assembly,1469-1474. Yoon, J. S., Sagong, M., Lee, J. S., & Lee, K. S. (2009). Feature extraction of a concrete tunnel liner from 3D laser scanning data. Ndt & E International, 42(2), 97-105. Zhang, A., Wang, K. C. P., Li, B. X., Yang, E. H., Dai, X. X., Peng, Y., Yue, F., Yang,L., Li, J.Q., & Chen, C. (2017). Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network.Computer-Aided Civil and Infrastructure Engineering, 32(10), 805-819. Zhang, W., Zhang, Z., Qi, D., & Liu, Y. (2014). Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors, 14(10),19307-19328. Zhong, Q., Bai, L., An, S. Q., Ju, F. R., & Liu, L. (2016).Lining seam elimination algorithm and surface crack detection in concrete tunnel lining. Journal of Electronic Imaging, 25(6).
|