跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 19:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賈米爾
研究生(外文):Jamin JamirEscalante
論文名稱:氫氮混合氣中真空度對氫氣滲透過鈀薄膜之影響
論文名稱(外文):Influence of vacuum degree on hydrogen permeation through palladium (Pd) membranes in H2/N2 gas mixtures
指導教授:陳維新陳維新引用關係
指導教授(外文):Wei-Hsin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:能源工程國際碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:84
外文關鍵詞:Hydrogen separation and purificationPalladium (Pd) membraneVacuumConcentration polarizationPermeancePerformance ImprovementActivation Energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The use of palladium membranes for industrial applications has gained much interest as of late. The purification of hydrogen through palladium (Pd) membranes has therefore been proposed as a viable solution to traditional separation methods. It is believed that hydrogen permeation can be enhanced when coupled with a vacuum at the permeate side. This study was divided into two parts.
The first part of the study focuses on the effects of various vacuum degrees applied to the permeate side of the Pd membrane, where the results under normal operation were compared to that without a vacuum. The feed gas used for experiments consists of a mixture of hydrogen (70 vol%) and nitrogen (30 vol%). Three membrane operating temperatures (320, 350, and 380 °C), four pressure differences (2, 3, 4, and 5atm) across the membrane, and four vacuum degrees (-15, -30, -45, and -53 kPa) applied to the permeate side are considered. For the three operating temperatures, the best improvements in the performance of hydrogen permeation are at 320 and 350 °C when a -53 kPa vacuum is applied, resulting in 79.4% and 79.1% improvements, respectively, compared to normal operations. Increasing temperatures leads to an increase in H2 permeation both with and without a vacuum; however, best performances of H2 permeation are observed in cases without a vacuum.
In the second part, the effect of different degrees of vacuum pressures on H2 permeation through a high-perm selectivity Pd membrane in different binary gas mixtures was investigated and compared to those without vacuum. Three feed gases were used containing three different H2 concentrations, which were 90, 70, and 50 vol% for each gas mixture. Hydrogen permeation rates were studied at 320, 350, and 380 °C under vacuum pressures ranging between 0 to -60 kPa. It was found that an increase in vacuum degree intensified H2 permeation. However, best performance improvements were observed at lower H2 concentrations, lower temperatures, and also at lower vacuum pressures for all gas mixtures. The highest performance improvement of 88.83% was with the gas mixture containing 50% H2 at 320 °C with a -15 kPa vacuum pressure. However, from an efficiency point of view, lower temperatures and vacuum pressures were preferred for all the gas mixtures, since the best improvements in H2 permeations under those conditions. This would minimize the overall energy requirements of the system for H2 purification. Activation Energies were also relatively lower for conditions with a vacuum for all gas mixtures.
Abstract i
Acknowledgements iii
Table of Contents iv
List of Tables vi
List of Figures vii
Nomenclature x
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation and objectives 4
1.3 Schematics of experimental procedures 5
Chapter 2. Literature Review 7
2.1 Gas mixtures 7
2.2 Activation energy 8
2.3 Vacuum technologies 8
Chapter 3. Methodology 13
3.1 Membrane tubes 13
3.2 Experimental set up 15
3.3 Operating conditions 20
3.3.1 Experiment 1 20
3.3.2 Experiment 2 21
3.4 Experimental procedure 22
3.5 Mechanism for hydrogen transport through the Pd membrane 24

Chapter 4. Results and Discussion 26
4.1 H2 permeation enhancements in membrane 1 of gas mixture: 70%H2+30%N2 under various vacuum pressures 26
4.1.1 The effect of vacuum on hydrogen permeation 26
4.1.2 Effect of membrane temperature 33
4.1.3 Permeance and concentration polarization 36
4.1.4 Permeance mechanism of a vacuum 40
4.2 H2 permeation enhancements in membrane 2 of three different gas mixtures with different H2 concentrations under various vacuum pressures 41
4.2.1 Influence of vacuum on hydrogen permeation 41
4.2.2 Hydrogen permeation improvement under different vacuum degrees …................................................................................... 49
4.2.3 Effect of membrane temperature 53
4.2.4 Pressure exponent 56
4.2.5 Activation energy 62
Chapter 5. Conclusions and Future Work 68
5.1 Conclusions 68
5.2 Future works 69
Appendix A. Reproducible data of the first study 71
Appendix B. Reproducible data of the second study 72
References 75
自述 84
1.Hubbert, M.K., Nuclear Energy and the Fossil Fuel, in Drilling and Production Practice. 1956, American Petroleum Institute: New York, New York. p. 19.
2.Shafiee, S. and E. Topal, When will fossil fuel reserves be diminished? Energy Policy, 2009. 37(1): p. 181-189.
3.Abas, N., A. Kalair, and N. Khan, Review of fossil fuels and future energy technologies. Futures, 2015. 69: p. 31-49.
4.Munday, P.L., M.I. McCormick, and G.E. Nilsson, Impact of global warming and rising CO2; levels on coral reef fishes: what hope for the future? The Journal of Experimental Biology, 2012. 215(22): p. 3865.
5.LaDeau, S.L. and J.S. Clark, Rising CO2; Levels and the Fecundity of Forest Trees. Science, 2001. 292(5514): p. 95.
6.Møller, K.T., et al., Hydrogen - A sustainable energy carrier. Progress in Natural Science: Materials International, 2017. 27(1): p. 34-40.
7.Cipriani, G., et al., Perspective on hydrogen energy carrier and its automotive applications. International Journal of Hydrogen Energy, 2014. 39(16): p. 8482-8494.
8.Luis Gandia GA, P.D., Renewable hydrogen technologies: Production, purification, storage applications and safety. 2013.
9.Silva, P.P., et al., Hydrogen production from steam and oxidative steam reforming of liquefied petroleum gas over cerium and strontium doped LaNiO3 catalysts. Catalysis Today, 2017. 289: p. 211-221.
10.Anzelmo, B., J. Wilcox, and S. Liguori, Natural gas steam reforming reaction at low temperature and pressure conditions for hydrogen production via Pd/PSS membrane reactor. Journal of Membrane Science, 2017. 522: p. 343-350.
11.Cavallaro, S., et al., Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources, 2003. 123(1): p. 10-16.
12.Chen, W.-H., et al., Hydrogen production from methanol partial oxidation over Pt/Al2O3 catalyst with low Pt content. Energy, 2015. 88: p. 399-407.
13.Goula, M.A., et al., Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method. International Journal of Hydrogen Energy, 2015. 40(30): p. 9183-9200.
14.Chen, W.-H., et al., Reaction phenomena of high-temperature water gas shift reaction in a membrane reactor. Fuel, 2017. 199: p. 358-371.
15.Palma, V., et al., H2 production by thermal decomposition of H2S in the presence of oxygen. International Journal of Hydrogen Energy, 2015. 40(1): p. 106-113.
16.Aronu, U.E., et al., Solvent selection for carbon dioxide absorption. Energy Procedia, 2009. 1(1): p. 1051-1057.
17.Sircar, S. and T.C. Golden, Purification of Hydrogen by Pressure Swing Adsorption. Separation Science and Technology, 2000. 35(5): p. 667-687.
18.Oh, H., et al., A Cryogenically Flexible Covalent Organic Framework for Efficient Hydrogen Isotope Separation by Quantum Sieving. Angewandte Chemie International Edition, 2013. 52(50): p. 13219-13222.
19.Bernardo, P., E. Drioli, and G. Golemme, Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 2009. 48(10): p. 4638-4663.
20.Strathmann, H., Membrane separation processes: Current relevance and future opportunities. AIChE Journal, 2001. 47(5): p. 1077-1087.
21.Adhikari, S. and S. Fernando, Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 2006. 45(3): p. 875-881.
22.Yun, S. and S. Ted Oyama, Correlations in palladium membranes for hydrogen separation: A review. Journal of Membrane Science, 2011. 375(1): p. 28-45.
23.Jia, H., et al., High-temperature stability of Pd alloy membranes containing Cu and Au. Journal of Membrane Science, 2017. 544: p. 151-160.
24.Hatlevik, Ø., et al., Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance. Separation and Purification Technology, 2010. 73(1): p. 59-64.
25.Abu El Hawa, H.W., et al., Identification of thermally stable Pd-alloy composite membranes for high temperature applications. Journal of Membrane Science, 2014. 466: p. 151-160.
26.Pacheco Tanaka, D.A., et al., Preparation of palladium and silver alloy membrane on a porous α-alumina tube via simultaneous electroless plating. Journal of Membrane Science, 2005. 247(1): p. 21-27.
27.Santucci, A., et al., Testing of dense Pd–Ag tubes: Effect of pressure and membrane thickness on the hydrogen permeability. Journal of Membrane Science, 2013. 444: p. 378-383.
28.Ryi, S.-K., et al., Pd–Cu alloy membrane deposited on CeO2 modified porous nickel support for hydrogen separation. International Journal of Hydrogen Energy, 2014. 39(9): p. 4698-4703.
29.Abu El Hawa, H.W., et al., Steam methane reforming in a PdAu membrane reactor: Long-term assessment. International Journal of Hydrogen Energy, 2016. 41(24): p. 10193-10201.
30.Li, X., et al., Hydrogen permeation through Pd-based composite membranes: Effects of porous substrate, diffusion barrier and sweep gas. Journal of Membrane Science, 2016. 499: p. 143-155.
31.Chen, W.-H., et al., Impact of vacuum operation on hydrogen permeation through a palladium membrane tube. International Journal of Hydrogen Energy, 2019. 44(28): p. 14434-14444.
32.David, O.C., et al., Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. Journal of Membrane Science, 2011. 378(1): p. 359-368.
33.Gallucci, F., et al., The effect of mixture gas on hydrogen permeation through a palladium membrane: Experimental study and theoretical approach. International Journal of Hydrogen Energy, 2007. 32(12): p. 1837-1845.
34.Chen, W.-H., et al., Hydrogen permeation and recovery from H2–N2 gas mixtures by Pd membranes with high permeance. International Journal of Hydrogen Energy, 2013. 38(34): p. 14730-14742.
35.Catalano, J., M. Giacinti Baschetti, and G.C. Sarti, Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science, 2009. 339(1): p. 57-67.
36.Catalano, J., M. Giacinti Baschetti, and G.C. Sarti, Influence of water vapor on hydrogen permeation through 2.5 μm Pd–Ag membranes. International Journal of Hydrogen Energy, 2011. 36(14): p. 8658-8673.
37.Holleck, G.L., Diffusion and solubility of hydrogen in palladium and palladium--silver alloys. The Journal of Physical Chemistry, 1970. 74(3): p. 503-511.
38.Amandusson, H., L.G. Ekedahl, and H. Dannetun, Hydrogen permeation through surface modified Pd and PdAg membranes. Journal of Membrane Science, 2001. 193(1): p. 35-47.
39.Shu, J., et al., Surface segregation of PdAg membranes upon hydrogen permeation. Surface Science, 1993. 291(1): p. 129-138.
40.Ali, J.K., E.J. Newson, and D.W.T. Rippin, Deactivation and regeneration of PdAg membranes for dehydrogenation reactions. Journal of Membrane Science, 1994. 89(1): p. 171-184.
41.Serra, E., et al., Hydrogen and deuterium in Pd-25 pct Ag alloy: Permeation, diffusion, solubilization, and surface reaction. Metallurgical and Materials Transactions A, 1998. 29(13): p. 1023-1028.
42.Jayaraman, V. and Y.S. Lin, Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. Journal of Membrane Science, 1995. 104(3): p. 251-262.
43.Toda, G., Rate of Permeation and Diffusion Coefficient of hydrogen through Palladium Journal of the Research Insititute for Catalysis Hokkaido Univeristy, 1958. 6(1): p. 7.
44.Katsuta, H., R.J. Farraro, and R.B. McLellan, The diffusivity of Hydrogen in palladium. Acta Metallurgica, 1979. 27(7): p. 1111-1114.
45.Hurlbert, R.C. and J.O. Konecny, Diffusion of Hydrogen through Palladium. The Journal of Chemical Physics, 1961. 34(2): p. 655-658.
46.Bandini, S. and G.C. Sarti, Heat and mass transport resistances in vacuum membrane distillation per drop. AIChE Journal, 1999. 45(7): p. 1422-1433.
47.Bandini, S., A. Saavedra, and G.C. Sarti, Vacuum membrane distillation: Experiments and modeling. AIChE Journal, 1997. 43(2): p. 398-408.
48.Fang, M., et al., CO2 chemical absorption by using membrane vacuum regeneration technology. Energy Procedia, 2009. 1(1): p. 815-822.
49.Wang, Z., et al., Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption–desorption analysis. Chemical Engineering Science, 2013. 93: p. 238-249.
50.Chi, Y.-H., et al., Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. International Journal of Hydrogen Energy, 2010. 35(12): p. 6303-6310.
51.Li, A., J. R.Grace, and C.J. Lim, Preparation of thin Pd-based composite membrane on planar metallic substrate: Part I: Pre-treatment of porous stainless steel substrate. Journal of Membrane Science, 2007. 298(1): p. 175-181.
52.Gao, H., et al., Chemical Stability and Its Improvement of Palladium-Based Metallic Membranes. Industrial & Engineering Chemistry Research, 2004. 43(22): p. 6920-6930.
53.Jia, H., et al., High-temperature stability of Pd alloy membranes containing Cu and Au. Vol. 544. 2017.
54.Al-Mufachi, N.A., N.V. Rees, and R. Steinberger-Wilkens, Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews, 2015. 47: p. 540-551.
55.Johansson, M., et al., Hydrogen adsorption on palladium and palladium hydride at 1bar. Surface Science, 2010. 604(7): p. 718-729.
56.Ward, T.L. and T. Dao, Model of hydrogen permeation behavior in palladium membranes. Journal of Membrane Science, 1999. 153(2): p. 211-231.
57.Huang, T.-C., M.-C. Wei, and H.-I. Chen, PERMEATION OF HYDROGEN THROUGH PALLADIUM/ALUMINA COMPOSITE MEMBRANES. Separation Science and Technology, 2001. 36(2): p. 199-222.
58.Chen, W.-H. and P.-C. Hsu, Hydrogen permeation measurements of Pd and Pd–Cu membranes using dynamic pressure difference method. International Journal of Hydrogen Energy, 2011. 36(15): p. 9355-9366.
59.Merkel, T.C., et al., Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010. 359(1): p. 126-139.
60.Lu, H., et al., Pd and Pd–Ni alloy composite membranes fabricated by electroless plating method on capillary α-Al2O3 substrates. International Journal of Hydrogen Energy, 2015. 40(8): p. 3548-3556.
61.Oyama, S.T., et al., Review on Mechanisms of Gas Permeation through Inorganic Membranes. Journal of the Japan Petroleum Institute, 2011. 54(5): p. 298-309.
62.Caravella, A., et al., Sieverts Law Empirical Exponent for Pd-Based Membranes: Critical Analysis in Pure H2 Permeation. The Journal of Physical Chemistry B, 2010. 114(18): p. 6033-6047.
63.Caravella, A., G. Barbieri, and E. Drioli, Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. Chemical Engineering Science, 2008. 63(8): p. 2149-2160.
64.Helmi, A., Sieverts’ Law, in Encyclopedia of Membranes, E. Drioli and L. Giorno, Editors. 2016, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1770-1771.
65.Tiemersma, T.P., et al., Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen. Chemical Engineering Science, 2006. 61(5): p. 1602-1616.
66.Caravella, A., G. Barbieri, and E. Drioli, Concentration polarization analysis in self-supported Pd-based membranes. Separation and Purification Technology, 2009. 66(3): p. 613-624.
67.Wang, W., et al., The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes. Separation and Purification Technology, 2007. 54(2): p. 262-271.
68.Basile, A., et al., Methane steam reforming in a Pd–Ag membrane reformer: An experimental study on reaction pressure influence at middle temperature. International Journal of Hydrogen Energy, 2011. 36(2): p. 1531-1539.
69.Okada, S., et al., Cermet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium. Thin Solid Films, 2007. 515(18): p. 7342-7346.
70.Roa, F., et al., Preparation and characterization of Pd–Cu composite membranes for hydrogen separation. Chemical Engineering Journal, 2003. 93(1): p. 11-22.
71.Fukahori, S., et al., Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis. International Journal of Hydrogen Energy, 2008. 33(6): p. 1661-1670.
72.Liang, W. and R. Hughes, The catalytic dehydrogenation of isobutane to isobutene in a palladium/silver composite membrane reactor. Catalysis Today, 2005. 104(2): p. 238-243.
73.Chen, W.-H., et al., Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd–Cu membrane tubes. Applied Energy, 2014. 113: p. 41-50.
74.Chen, W.-H., et al., A numerical approach of conjugate hydrogen permeation and polarization in a Pd membrane tube. International Journal of Hydrogen Energy, 2012. 37(17): p. 12666-12679.
75.Chen, W.-H., et al., Permeation characteristics of hydrogen through palladium membranes in binary and ternary gas mixtures. International Journal of Energy Research, 2017. 41(11): p. 1579-1595.
76.Peters, T.A., et al., High pressure performance of thin Pd–23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux. Journal of Membrane Science, 2008. 316(1): p. 119-127.
77.Amira, A., et al., Mass Transfer Mechanisms and Transport Resistances in Membrane Separation Process. 2015.
78.Gray, J., Programmed cell death in plants. 2004, Oxford: Blackwell Publishing. xiii + 287 pp.
79.Rothenberger, K.S., et al., High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating. Journal of Membrane Science, 2004. 244(1): p. 55-68.
80.Shi, Z., et al., An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science, 2006. 280(1): p. 705-711.
81.Tong, J., et al., Thin Pd membrane on α-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template. Journal of Membrane Science, 2008. 310(1): p. 93-101.
82.Defect‐free palladium membranes on porous stainless‐steel support. AIChE Journal, 1998. 44(2): p. 310-322.
83.Jarosch, K. and H.I. de Lasa, Permeability, Selectivity, and Testing of Hydrogen Diffusion Membranes Suitable for Use in Steam Reforming. Industrial & Engineering Chemistry Research, 2001. 40(23): p. 5391-5397.
84.Chen, W.-H., et al., Impact of vacuum operation on hydrogen permeation through a palladium membrane tube. International Journal of Hydrogen Energy, 2019.
85.Jeon, S.I., et al., The effect of temperature and pressure on the hydrogen permeation through Pd-coated Ti26Ni21V53 alloy membrane under different atmospheres. Materials Letters, 2011. 65(15): p. 2495-2497.
86.Steward, S.A., Review of Hydrogen Isotope Permeability Through Materials. United States: N. p, 1983.
87.Howard, B.H., et al., Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures. Journal of Membrane Science, 2004. 241(2): p. 207-218.
88.Chen, W.-H., P.-C. Hsu, and B.-J. Lin, Hydrogen permeation dynamics across a palladium membrane in a varying pressure environment. International Journal of Hydrogen Energy, 2010. 35(11): p. 5410-5418.
89.Chen, W.-H. and I.H. Chiu, Transient dynamic of hydrogen permeation through a palladium membrane. International Journal of Hydrogen Energy, 2009. 34(5): p. 2440-2448.
90.Balovnev, Y.A., Diffusion of Hydrogen in Palladium. Russ. J. Phys. Chem. , 1974. 48: p. 409-410.
91.Koffler, S.A., J.B. Hudson, and G.S. Ansell, Hydrogen Permeation Through AlphaPalladium. Transactions of the Metallurgical Society of AIME 245, 1969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top