跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永維
研究生(外文):Yung-WeiChen
論文名稱:應用於5G無線通訊系統之新型微小化多層交錯耦合結構帶通濾波器與多頻多工器
論文名稱(外文):New Compact Bandpass Filters and Multiplexers Using The Multilayer Cross-Coupling Structure and Its Application to 5G Wireless Communication System
指導教授:蘇炎坤蘇炎坤引用關係吳宏偉
指導教授(外文):Yan-Kuin SuHung-Wei Wu
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:99
中文關鍵詞:多頻濾波器多層基板多工器步階式阻抗共振器
外文關鍵詞:Multi-band bandpass filterMulti-layered substrateStepped impedance resonatorStub-loaded resonator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文內容主要分為五部分: (a)微小化多層四頻帶通濾波器之設計(b)新型多層五頻帶通濾波器; (c)利用半集總短路步階阻抗共振器實現微小化三工器(d)利用短截線負載諧振器之新型微小化五工器; (e)為多頻段無線通信系統設計新的八通道雙工器。
第一部分介紹一種多層技術的微小型四頻帶通濾波器。 該濾波器設計為具有1.8, 2.4, 3.5和4.2 GHz的四頻段。 透過控制附載樁式步階式阻抗共振器(Stub loaded stepped impedance resonator, SL-SIR)的阻抗和長度比,同時產生四個通帶。 通過使用附載樁式步階式阻抗共振器,可以輕鬆實現具有緊密通帶的濾波器。 寬止帶(Wide stopband)的頻率響應是使用缺陷接地結構(Defected ground structure, DGS)產生,並在4.2到12 GHz之間有-25 dB的寬止帶響應。
於第二部分的研究中,則介紹一種採用多層技術之五通帶通濾波器。 該濾波器設計為具有1.8, 2.4, 3.5, 4.2和5.2 GHz的五個通帶。 通過控制附載樁式步階式阻抗共振器(Stub loaded stepped impedance resonator, SL-SIR)和非對稱步階式阻抗共振器(Asymmetric stepped impedance resonator, ASIR)的阻抗比和長度比,同時產生這五個通帶。 使用樁式步階式阻抗共振器和非對稱步階式阻抗共振器可以輕鬆實現具有緊密通帶的濾波器。
於第三部分的研究中,則介紹一種使用半集總短路步階式阻抗共振器的微小型三工器。 三工器設計為2.4 / 3.5 / 5.2 GHz。 三工器由三對半集短路步階式阻抗共振器(Semi-lumped short-ended stepped impedance resonator)和源負載耦合線(Source-loaded coupling line)組成。 通過適當地調整半集總短路步階式阻抗共振器的阻抗比(R),長度比(α)和電感槽孔,可以容易地確定三個通道頻率。
於第四部份的研究中,則介紹一種使用半集總短路步階式阻抗共振器(Semi-lumped short-ended stepped impedance resonator)的微小型五工器。 五通道由五對步階式阻抗共振器組成,每個通道的諧振器中心都有短路短截線。 通過適當地調整步階式阻抗共振器的阻抗比(K)和長度比(α),可以容易地確定五個頻率。
最後,於第五部分的研究中則提出了一種新的八通道雙工器(1.575 / 2.4 / 3.5 / 5.2 GHz和1.8 / 2.6 / 4.2 / 5.7 GHz),其具有簡單的源負載輸入/輸出結構,包含四對耦合非對稱步進阻抗諧振器(Asymmetric stepped impedance resonator, ASIR)緊湊的電路尺寸。 通過調整非對稱步階式阻抗共振器的阻抗比和長度比,可以容易地確定每個諧振模式,並且可以實現具有接近四通帶的雙工器。
The thesis divides into five parts: (a)Design of compact multilayered quad-band bandpass filter (b) new multilayered quint-band bandpass filter; (c) compact microstrip triplexer using semi-lumped short-ended stepped impedance resonators (d) new compact pentaplexer using stub-loaded stepped impedance resonators; and (e)design of new eight-channel diplexer for multiband wireless communication system.
Firstly, this study proposed a compact quad-band bandpass filter (BPF) using multilayer substrate technique. The filter is designed to have quad-band at 1.8, 2.4, 3.5 and 4.2 GHz. The four passbands are simultaneously generated by controlling the impedance and length ratios of the stub-loaded stepped impedance resonators (SIRs). By using the stub-loaded SIRs, the filter with closed passbands can be easily achieved. The frequency response of wide stopband is generated by using the defected ground structure (DGS) and having around -25 dB stopband from 4.2 to 12 GHz.
Then, a quint-passband bandpass filter that uses a multilayer substrate technique is investigated in this part of dissertation. The filter is designed to have quint-passband at 1.8, 2.4, 3.5, 4.2, and 5.2 GHz. These five passbands are simultaneously generated by controlling the impedance ratios and length ratios of the stub-loaded stepped impedance resonators (SIRs) and asymmetric SIRs. The filter with closed passbands can easily be achieved using the stub-loaded SIRs and asymmetric SIRs.
Then, a compact microstrip triplexer using the semi-lumped short-ended stepped impedance resonators is proposed. The triplexer is designed at 2.4 / 3.5 / 5.2 GHz. The triplexer is composed of three pairs of semi-lumped short-ended stepped impedance resonators and the source-load coupling lines. By properly tuning the impedance ratio (R), length ratio (α) and inductive via hole of the semi-lumped short-ended stepped impedance resonators, three channels (passbands) frequencies can be easily determined. To improve the passband selectivity, the source-load coupling lines are designed to correspond to the quarter-wavelength at the center frequency for each channel. The proposed triplexer is showing a simple configuration, an effective design method and a small circuit size.
Then, we proposed a compact pentaplexer using the stub-loaded stepped impedance. The pentaplexer is composed of five pairs of stepped impedance resonators with short-circuited stub at the center of resonator for each channel (passbands). By properly tuning the impedance ratio (K) and length ratio (α) of the stepped impedance resonators, five channels frequencies can be easily determined.
Finally, we proposed a new eight-channel diplexer (1.575/2.4/3.5/5.2 GHz and 1.8/2.6/4.2/5.7 GHz) with a simple source-load input/output structure containing four pairs of coupled asymmetric stepped-impedance resonators (SIRs) in a compact circuit size. By tuning the impedance ratio and length ratio of the asymmetric stepped-impedance resonators (SIRs), each resonant mode can be easily determined, and the diplexer with close quad-passbands (quad-channels) can be implemented.
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgement V
Contents VI
List of tables VIII
List of figures IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 General review of multi-band filters 1
1.2.1 Review of quad-band filters 2
1.2.2 Review of quint-band filters 2
1.2.3 Review of multiplexer 3
1.3 Organization of this dissertation 3
Chapter 2 Planar Transmission Line and Filter Design Theory 7
2.1 Basic theory of microwave filters 7
2.2 General the theory of couplings 10
2.3 Selective filters with a single pair of transmission zeros 16
2.4 Introduction of stepped impedance resonator 17
Chapter 3 Design of Compact Multilayered Quad-band Bandpass Filter 24
3.1 Introduction 24
3.2 Filter Design 25
3.3 Result 27
3.4 Summary 27
Chapter 4 New Multilayered Quint-band Bandpass Filter 34
4.1 Introduction 34
4.2 Design of quint filter 34
4.3 Result and discussion 38
4.4 Summary 38
Chapter 5 Compact Microstrip Triplexer Using Semi-Lumped Short-Ended Stepped Impedance Resonators 45
5.1 Introduction 45
5.2 Triplexer Design 45
5.3 Result and discussion 47
5.4 Summary 48
Chapter 6 New Compact Pentaplexer Using Stub-Loaded Stepped Impedance Resonators 55
6.1 Introduction 55
6.2 Design of the pentaplexer 56
6.3 Result and discussion 57
6.4 Summary 58
Chapter 7 Design of New Eight-Channel Diplexer for Multiband Wireless Communication System 64
7.1 Introduction 64
7.2 Design of eight-channel diplexer 65
7.3 Result and discution 69
7.4 Summary 70
Chapter 8 Conclusions and Future work 84
8.1 Conclusions 84
8.2 Future work 85
References 87
Publication list 96
Chapter 1
[1]https://yukima.me/cb-radio-frequency-chart.html/cb-radio-frequency-chart-new-spectrum-allocation-in-india-journey-so-far
[2]https://zhuanlan.zhihu.com/p/62601055
[3]http://wangofnextdoor.blogspot.com/2018/06/lcp.html
[4]https://www.microwavejournal.com/
[5]S. Luo, L. Zhu, and S. Sun, “Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator, IEEE Trans. Microw. Theory Tech., vol. 59, pp.1222-1229, 2011.
[6]W. Y. Chen, S. J. Chang, M. H. Weng, Y. H. Su, and H. Kuan, “Simple method to design a tri-band bandpass filter using asymmetric SIRs for GSM, Wimax and WLAN applications, Microwave Opt. Technol. Lett., vol. 53, pp. 1573-1576, 2011.
[7]C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators, IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp. 3550–3558, Sept. 2006.
[8]F. C. Chen and Q. X Chu, “Design of compact tri-band bandpass filters using assembled resonators, IEEE Microw. Theory Tech., vol. 57, pp. 165–171, 2009.
[9]C. I G. Hsu, C. H. Lee, and Y. H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,’’ IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19-21, Jan. 2008.
[10]S. Gao , Z. Y. Xiao, H. H. Hu, “A novel compact dual-band bandpass filter using SIRs with open-stub line, Microwave Conference, 2008 China-Japan Joint, pp. 464-466, 2008.
[11]C. M. Cheng and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, May 2010.
[12]H. W. Wu and R. Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
[13]S. C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission, IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[14]J. Xu, W. Wu, and C. Miao, “Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator, IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3187–3199, Sep. 2013.
[15]C. F. Chen, T. M. Shen, T. Y. Huang and R. B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers, IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848-856, Apr. 2011.
[16]H. W. Wu, S. H. Huang and Y. F. Chen, “Design of new quad-channel diplexer with compact circuit size, IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240-242, May. 2013.
[17]W. H. Tu and W. C. Hung, “Microstrip eight-channel diplexer with wide stopband, IEEE Microw. Wireless Compon. Lett., vol. 24, no. 11, pp. 272-274, Nov. 2014.
[18]S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems, IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370–1378, Apr. 2006.
[19]X. Guan, F. Yang, H. Liu and L. Zhu, “Compact and high-isolation diplexer using dual-mode stub-loaded resonators, IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 385-387, Jun. 2014.
[20]J. Y. Wu, K. W. Hsu, Y. H. Tseng and W. H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173-175, Apr. 2012.
[21]K. W. Hsu, W.-C. Hung and W. H. Tu, ‘Compact quint-band microstrip bandpass filter using double-layered substrate,’ in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, USA, pp. 1–4, 2013.
[22]C.-F Chen, ‘Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, 2012.
[23]P. H. Deng, B. L. Huang and B. L. Chen, ‘Designs of microstrip four- and five-channel multiplexers using branch-line-shaped matching circuits,’ IEEE Transactions on Components, Packaging And Manufacturing Technology., vol. 63, no. 12, pp. 1331-1338, 2015.
[24]J. Xu, W. Wu and G. Wei, ‘Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator,’ IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3909–3919, 2015.
[25]Y. W. Chen, Z. J. Tai, H. W. Wu, Y. K. Su and Y. H. Wang, ‘Design of compact multilayered quad-band bandpass filter,’ 2017 IEEE International Microwave Symposium (IMS), Hawaii, USA., pp. 879–881, 2017.
[26]Y. W. Chen, H. W. Wu and Y. K. Su, ‘Design of multilayered bandpass filter with independently controllable triple-passband response,’ International Journal of Microwave and Wireless Technologies, vol. 6, no. 6, pp. 611–618, 2014.
Chapter 2
[1]D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[2]G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[3]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A Miniaturized Monolithic Dual-band Filter Using Ceramic Lamination Technique for Dual-mode Portable Telephones, in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 789–792. 1997.
[4]K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition, Artech House Inc., Norwood, MA, pp.91-92, 1996.
[5]James, J. R. and Henderson, A., “High-frequency behaviour of microstrip
[6]open-circuit terminations, IEE J. on Microwaves, Optics and Acoustics, vol. 3, pp. 205-218, Sep. 1979.
[7]C. Veyres and V. F. Hanna,‘‘Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimensions,’’ Int. J. Electron., vol. 48, no. 1,pp. 47—56, Jan. 1980.
[8]R. E. Collin, Foundations for Microwave Engineering, 2nd ed., New York:McGraw-Hill, 1992, pp. 178-179.
[9]R. B. Marks, ‘‘A Multiline Method of Network Analyzer Calibration,’’ IEEE Trans. Microwave Theory Tech., vol. 39, no. 7, pp. 1205-1215, July 1991.
[10]http://probenotes.com/Notes/Filter/FilterSpec.html.
[11]G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[12]S. F. Chang, Y. H. Jeng, and J. L. Chen, Dual-band step-impedance bandpass filter for multimode wireless LANs, IEE Electron. Lett., no. 40, pp. 38-39, 2004.
[13]S. F. Chang, J. L. Chen, and S. C. Chang, New dual-band bandpass filters with step-impedance resonators comb and hairpin structures, in Proc. Asia Pacific Microw. Conf., 2003, pp. 793–796.
[14]S. Sun and L. Zhu, Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths, in IEEE MTT-S Int. Dig., 2005, pp. 2195-2198.
[15]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Springer-Verlag, 2000.
[16]M. H. Weng, C. H. Kao, and Y. C. Chang, “A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs, Journal of Electromagnetic Waves and Applications, vol. 24, pp. 161-168, 2011.
[17]X.-Y. Zhang, J.-X. Chen, Q. Xue, and S.-M. Li, “Dual-band bandpass filters using stub-loaded resonators, ’’IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp.583-585, Aug. 2007.
Chapter 3
[1]K. W. Hsu, W. C. Hung and W. H. Tu,Compact Quint-Band Microstrip Bandpass Filter Using Double-Layered Substrate, 2013 IEEE International Microwave Symposium (IMS),seattle. USA.
[2]C. M. Cheng and C. F. Yang, Develop quad-band bandpass filters on the ceramic substrate, IEEE Microw. Wireless Compon. Lett.,vol. 20, no.5, pp. 268-230, May 2010.
[3]K. W. Hsu and W. H. Tu, Design of a Novel Four-Band Microstrip Bandpass Filter Using Double- Layered Substrate, 2009 IEEE International Microwave Symposium (IMS), Boston, USA.
[4]J. Xu, W. Wu and C. Miao, “Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator, IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3187–3199, Sep. 2013.
[5]S. C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission, IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[6]C. Y. Hsu, C. Y. Chen and H. R. Chuang, “A miniaturized dual-band bandpass filter using embedded resonators, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 658-659, Dec. 2011.
[7]IE3D Simulator, Zeland Softw., Inc., Fremont, CA, USA, 2002.
[8]H. W. Wu, Y. F. Chen and Y. W. Chen, “Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform-impedance resonators, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 114-116, Mar. 2012.
[9]C. M. Cheng and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, May 2010.
[10]H. W. Wu and R. Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
Chapter 4
[1]K. W. Hsu, W.-C. Hung and W. H. Tu, ‘Compact quint-band microstrip bandpass filter using double-layered substrate,’ in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, USA, pp. 1–4, 2013.
[2]C.-F Chen, ‘Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, 2012.
[3]P. H. Deng, B. L. Huang and B. L. Chen, ‘Designs of microstrip four- and five-channel multiplexers using branch-line-shaped matching circuits,’ IEEE Transactions on Components, Packaging And Manufacturing Technology., vol. 63, no. 12, pp. 1331-1338, 2015.
[4]J. Xu, W. Wu and G. Wei, ‘Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator,’ IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3909–3919, 2015.
[5]Y. W. Chen, Z. J. Tai, H. W. Wu, Y. K. Su and Y. H. Wang, ‘Design of compact multilayered quad-band bandpass filter,’ 2017 IEEE International Microwave Symposium (IMS), Hawaii, USA., pp. 879–881, 2017.
[6]Y. W. Chen, H. W. Wu and Y. K. Su, ‘Design of multilayered bandpass filter with independently controllable triple-passband response,’ International Journal of Microwave and Wireless Technologies, vol. 6, no. 6, pp. 611–618, 2014.
[7]IE3D Simulator, Zeland Softw., Inc., Fremont, 2002. CA, USA.
[8]H. W. Wu, Y. F. Chen and Y. W. Chen, ‘Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform-impedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 22, vol. 3, pp. 114-116, 2012.
[9]Hong, J. S. Microstrip Filters for RF/Microwave Application, 2nd Edition, John Wiley & Sons, Inc., 2011.
[10]C. M. Cheng and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, 2010.
[11]H. W. Wu and R. Y. Yang, ‘A new quad-band bandpass filter using asymmetric stepped impedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, 2011.
[12]S. C. Lin, ‘Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,’ IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 1937–1946, 2011.
[13]J. Xu, W. Wu and C. Miao, ‘Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator,’ IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3187–3199, 2013.
[14]F. Wei, P. Y. Qin, Y. J. Guo and X. W. Shi,’ Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure.’ IET Microwaves, Antennas & Propagation, vol. 10, no. 2, pp. 230 – 236, 2016.
[15]C. H. Lee, C. I. G. Hsu, S. X. Wu and P. H. Wen, ’ Balanced quad-band diplexer with wide common-mode suppression and high differential-mode isolation.’ IET Microwaves, Antennas & Propagation, vol. 10, no. 6, pp. 599–603, 2016.
Chapter 5
[1]Deng P. H., Lai M. I., Jeng S. K. and Chen C. H., “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators, IEEE Trans. Microw. Theory Tech., 2006, pp. 4185-4192.
[2]T. Yang, P. L. Chi and T. Itoh, “Compact Quarter-Wave Resonator and Its Applications to Miniaturized Diplexer and Triplexer, IEEE Trans. Microw. Theory Tech., 2011, pp. 260-269.
[3]C. F. Chen, T. Y. Huang, T. M. Shen and R. B. Wu, “A miniaturized microstrip common resonator triplexer without extra matching etwork, Asia-Pacific Microw. Conf., 2006, pp. 1439-1442.
[4]J. Y. Wu, K. W. Hsu, Y. H. Tseng, and W. H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators, IEEE Trans. Microw. Theory Tech., 2012, pp. 173-175.
[5]C. W. Tang and C. T. Tseng, “Design of A Packaged Microstrip Triplexer With Star-Junction Topology, European Microwave Conference., 2012, pp. 459-462.
[6]M. E. Goldfarb and R. A. Pucel, “Modeling via hole grounds in microstrip, IEEE Microw. Guid. Wave Lett., 1991, pp. 135–137.
[7]IE3D Simulator. Fremont, CA: Zeland Software, Inc., 2002.
[8]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd ed. New York: Wiley, 2011, ch. 9.
Chapter 6
[1]P. H. Deng, M. I. Lai, S. K. Jeng, C. H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators, IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4185-4192, Dec. 2006.
[2]T. Yang, P. L. Chi and T. Itoh, “Compact Quarter-Wave Resonator and Its Applications to Miniaturized Diplexer and Triplexer, IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 260-269, Feb. 2011.
[3]C. F. Chen, T. Y. Huang, T. M. Shen and R. B. Wu, “A miniaturized microstrip common resonator triplexer without extra matching etwork, Asia-Pacific Microw. Conf., pp. 1439-1442, Dec. 2006.
[4]S. J. Zeng, J. Y. Wu and W. H. Tu, “Compact and High-Isolation Quadruplexer Using Distributed Coupling Technique, IEEE Microw.Wireless Compon. Lett., vol21, pp. 197-199, April. 2011.
[5]M. Makimoto, and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators, IEEE Trans. Microw. Theory Tech., vol. 28, pp. 1413-1417, Dec. 1980.
[6]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd. New York: Wiley, 2011.
[7]IE3D Simulator, Zeland Software, Inc. 2002.
Chapter 7
[1]C. F. Chen, T. M. Shen, T. Y. Huang, and R. B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers, IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848-856, Apr. 2011.
[2]J. Y. Wu, K. W. Hsu, Y. H. Tseng, and W. H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173-175, Apr. 2012.
[3] H. W. Wu, S. H. Huang, and Y. F. Chen, “Design of new quad-channel diplexer with compact circuit size, IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240-242, May. 2013.
[4] W. H. Tu, and W. C. Hung, “Microstrip eight-channel diplexer with wide stopband, IEEE Microw. Wireless Compon. Lett., vol. 24, no. 11, pp. 272-274, Nov. 2014.
[5]S. Hong, and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems, IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370–1378, Apr. 2006.
[6]Y. W. Chen, H. W. Wu, Z. J. Dai, and Y. K. Su, “Design of compact six-channel diplexer, IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 792-794, Oct. 2016.
[7]K. W. Hsu, J. H. Lin, and W. H. Tu, “Compact Sext-Band Bandpass Filter With Sharp Rejection Response, IEEE Trans. Microw. Theory Tech., vol. 24, no. 9, pp. 593–595, Sep. 2014.
[8]L. K. Yeung and K.-L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zero, IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[9]J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd ed. New York: Wiley, 2011, ch. 9.
[10]IE3D Simulator, Zeland Software, Inc., 2002.
[11]S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 197–199, Apr. 2011.
[12]C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 534–536, Oct. 2011.
[13]M. Zewani and I. C. Hunter, “Design of ring-manifold microwave multiplexers, in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, Jun. 2006, pp. 689–692.
[14]W. H. Tu and K. W. Hsu, “Design of Sext-Band Bandpass Filter and Sextaplexer Using Semilumped Resonators for System in a Package, IEEE Transactions on Components, Packaging and Manufacturing Technology., vol. 5, no. 2, pp. 265-273, Jan. 2015.
[15]C.-W. Tang and M.-G. Chen, “Packaged microstrip triplexer with star-junction topology, Electron. Lett., vol. 48, no. 12, pp. 699–701, Jun. 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top