跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜澍
研究生(外文):Yi-ShuHsieh
論文名稱:利用鎳金合金奈米柱製備之葡萄糖感測器完成非酶葡萄糖感測
論文名稱(外文):Fabrication of Ni-Au Alloy Nanowire Glucose Sensor for Non-enzymatic Glucose Sensing
指導教授:洪茂峰洪茂峰引用關係
指導教授(外文):Mau-Phon Houng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:陽極氧化鋁鎳金合金奈米柱非酶葡萄糖感測
外文關鍵詞:Thin film AAONi-Au alloy nanowirenon-enzymatic glucose sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用薄膜式陽極氧化鋁(Anodic aluminum oxide, AAO)模板輔助電化學電鍍製備鎳金合金奈米柱,應用於非酶葡萄糖感測,與傳統鋁片式相比,薄膜式AAO解決了傳統鋁片式良率低的缺點,並縮短整體製程時間,同時使用低成本電鍍方式製備金鎳合金奈米柱,期望透過此種高表面積之結構,提升葡萄糖感測之靈敏度。
本實驗成功於P型重摻雜基板上製備鎳金合金奈米柱,在室溫下,配合調變酸鹼值至2.0、電鍍電壓(-1.6)V、電鍍週期10%等方式,利用脈衝式三極電鍍法得到最佳之鎳金合金奈米柱填孔均勻性,而後將模板完全移除,使得鎳金合金奈米柱完全裸露呈現筆直均勻分布,進一步進行葡萄糖感測。製備之鎳金合金奈米柱在進行連續葡萄糖及其他物質投入量測後,得到靈敏度1893(μAmM-1cm-2)、量測範圍0mM-3mM、感測極限1μM、選擇性佳及穩定度至少30天之葡萄糖感測器良好指標。
In this research, the fabrication of Ni-Au alloy nanowire for non-enzymatic glucose sensor on p-silicon based anodic aluminum oxide (AAO) template is discussed. The Ni-Au alloy nanowire is applied on an electrochemical glucose sensor.
The Ni-Au alloy nanowire was fabricated via the self-made AAO template grown on the p-type heavily doped silicon substrate. The advantages of AAO on silicon are lower cost, stronger mechanical and less production time consuming comparing to traditional AAO grown directly by using aluminum.
The electrodeposition of the Ni-Au alloy nanowire was fabricated by three-electrode system and pulse signals. The best parameter of Ni-Au alloy nanowire electrodeposition is (-1.6)V、PH2.0 and duty cycle 10%. To remove the AAO template after depositing, 2M alkaline medium was used in 30℃. The Ni-Au alloy nanowires exhibit high uniform arrangement. Further, use the Ni-Au alloy nanowires for the application of glucose measurement.
After a successive injection of glucose and other substantial for measurement, the Ni-Au alloy glucose sensor exhibited a linear range of 0-3mM, a sensitivity of 1893 μA/mMcm2, and a detection limit of 1μM. Simultaneously, a superior selectivity and at least 30 days stability was also observed. The characteristics show that Ni-Au alloy nanowire has an excellent performance for glucose sensing.
摘要 I
SUMMARY II
致謝 VIII
目錄 VIII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1前言 1
1-2葡萄糖感測器簡介 2
1-3奈米材料與結構 6
1-3-1 金屬奈米粒子及合金複合型奈米粒子 7
1-3-2 鎳與金奈米材料特性 9
1-3-3 陣列式奈米柱 11
1-3-4 奈米柱製備 12
1-3-5 奈米柱應用 13
1-4研究動機 14
第二章 理論基礎 15
2-1陽極氧化鋁模版 15
2-1-1 陽極氧化鋁模版反應方程式 16
2-1-2 陽極氧化鋁模版生成機制 17
2-1-3 陽極氧化鋁模版製程差異 19
2-1-4 鋁膜式與鋁片式陽極氧化鋁模版差異 20
2-2表面改質 21
2-2-1 DMSO二甲基亞碸 22
2-2-2 DMSO二甲基亞碸於表面改質應用 23
2-3電鍍添加劑 24
2-3-1 H3BO3硼酸 24
2-3-2 DMSO二甲基亞碸於電鍍應用 25
2-4電化學電鍍 26
2-4-1 三極電鍍(Three electrode system) 27
2-4-2 脈衝電鍍(Pulse plating) 29
2-4-3 影響電鍍之原因 31
2-5非酶葡萄糖感測 33
2-5-1 循環伏安法(Cyclic Voltammetry) 33
2-5-2 金屬非酶葡萄糖感測原理 34
2-5-3 葡萄糖感測結果表示方式 36
第三章 實驗方法及量測儀器介紹 38
3-1實驗流程 38
3-1-1 鋁膜基板前置製程 41
3-1-2 陽極氧化鋁模板製程 42
3-1-3 鎳金合金奈米柱電鍍 44
3-1-4 移除陽極氧化鋁模版 46
3-1-5 非酶葡萄糖感測 47
3-2實驗藥品與材料 48
3-2-1 前置處理藥品 48
3-2-2 陽極氧化鋁模板製程藥品 48
3-2-3 鎳金合金奈米柱電鍍藥品 49
3-2-4 移除陽極氧化鋁模板及葡萄糖感測藥品 49
3-3實驗參數 50
3-3-1 陽極氧化鋁模版參數 50
3-3-2 鎳金合金奈米柱電鍍參數 50
3-3-3 移除陽極氧化鋁模板參數與非酶葡萄糖感測參數 51
3-4量測儀器介紹 52
3-4-1 熱蒸鍍系統(Thermal evaporation deposition) 52
3-4-2 高溫爐管退火系統(Tubular furnaces) 53
3-4-3 高解析掃描式電子顯微鏡(Fe-SEM) 54
3-4-4 能量分析光譜儀(EDS) 55
3-4-5 多功能X光薄膜繞射儀(XRD) 56
3-4-6 穿透式電子顯微鏡(TEM) 59
第四章 結果與討論 60
4-1實驗架構 60
4-2薄膜式陽極氧化鋁模版製備 61
4-3鎳金合金奈米柱電鍍參數探討 62
4-3-1 退火參數、電鍍液配方及還原電位Von 63
4-3-2 限流及PH值 69
4-3-3 抑制電流Voff及電鍍時間 74
4-4鎳金合金奈米柱材料分析 79
4-4-1 元素分析(EDS、Line-scanning、Mapping) 79
4-4-2 XRD分析 81
4-4-3 TEM分析 82
4-5非酶葡萄糖感測 85
4-5-1 靈敏度(Sensitivity)及可量測範圍(Linear range) 86
4-5-2 退火參數對靈敏度之影響 88
4-5-3 感測極限(Detection limit) 90
4-5-4 選擇性(Selectivity) 91
4-5-5 穩定度(Stability) 92
第五章 結論 93
第六章 未來展望 96
參考文獻 97
[1]林景正and賴仁宏, 奈米材料技術與發展趨勢, 奈米材料與技術專題, 工業材料153期, p. 97, 1999.
[2]邱信凱, 鎳金合金奈米粒子之製備與特性研究, 國立成功大學化學工程研究所碩士論文, 2015.
[3]Liu, Jun-Hong et al., Synergistic effect in an Au−Ag alloy nanocatalyst: CO oxidation, The Journal of Physical Chemistry B vol.109, no.1, pp. 40-43, 2005.
[4]黎巧郁, 利用陽極氧化鋁模板成長金奈米柱製備有機硫化物之氣體感測器,國立成功大學微電子工程研究所碩士論文, 2016.
[5]Ali, Azahar et al., Nanostructured zinc oxide film for urea sensor, Materials Letters, vol.63, no.28, pp. 2479-2475, 2009.
[6]S. S. Chang and C. R .C. Wang, 金屬奈米粒子的吸收光譜, Chemistry, 1998.
[7]陳東煌, 複合奈米粒子有趣的人造原子, 科學發展408期, p.42, 2006.
[8] Sheng, Qu, et al., PtxNi/C nanostructured composites fabricated by chemical reduction and their application in non-enzymatic glucose sensors, Sensors and Actuators B: Chemical, vol.203, pp. 588-595, 2014. 
[9]Yang, Han, et al., Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing, Biosensors and Bioelectronics, vol.124 , pp.191-198, 2019.
[10]Morita, Masao, et al., Nickel content dependence of electrochemical behavior of carbohydrates on a titanium–nickel alloy electrode and its application to a liquid chromatography detector, Journal of Chromatography A ,vol.837, no.1-2, pp. 17-24, 1999.
[11]Lu, Li-Min, et al., A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy, Biosensors and Bioelectronics, vol.25, no.1 ,pp.218-223, 2009.
[12]Casella, Innocenzo G., Maria Gatta, and Tommaso RI Cataldi., Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography, Journal of Chromatography A, vol.878, no.1, pp.57-67, 2000.
[13]嚴鴻仁and徐善慧, 奈米科技與生物醫學:奈米金與銀的妙用, 《科學發展》431期, pp.28-33, 2008.
[14]Qin, Lirong, et al., Synthesis of Ni/Au multilayer nanowire arrays for ultrasensitive non-enzymatic sensing of glucose. Sensors and Actuators B: Chemical, vol.240, 2017. 
[15]Pandey, Gaurav, Deepak Rawtani, and Yadvendra Kumar Agrawal, Aspects of nanoelectronics in materials development. Nanoelectronics and Materials Development, IntechOpen, 2016.
[16]Wagner, R. S., and W. C. Ellis., Vapor‐liquid‐solid mechanism of single crystal growth, Applied physics letters, vol.4, no.5, pp.89-90, 1964.
[17]Zhuang, Zhenjing, et al., An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst, vol.133, no.1, pp.126-132, 2008.
[18]Cherevko, Serhiy, and Chan-Hwa Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection, Sensors and Actuators B: Chemical, vol.142, no.1 , pp.216-223, 2009.
[19]Hernandez-Pagan, Emil A., Wei Wang, and Thomas E. Mallouk, Template electrodeposition of single-phase p-and n-type copper indium diselenide (CuInSe2) nanowire arrays, Acs Nano, vol.5, no.4, pp.3237-3241, 2011.
[20]黃銘揚, 矽基板製備陽極氧化鋁核殼結構單晶二硒化銅銦二極體及光感測器應用, 國立成功大學微電子工程研究所碩士論文, 2018.
[21]Keller, F., M. S. Hunter, and D. L. Robinson., Structural features of 92 oxide coatings on aluminum, Journal of the Electrochemical Society, vol.100, no.9, pp.411-419, 1953. 
[22]余成恩, 陽極氧化鋁模板之製備與鑑定, 國立中正大學化學工程所碩士論文, 2006.
[23]Li, Feiyue, Lan Zhang, and Robert M. Metzger., On the growth of highly ordered pores in anodized aluminum oxide, Chemistry of materials, vol.10, no.9, pp.2470-2480, 1998.
[24] Thompson, G. E., Porous anodic alumina: fabrication, characterization and applications, Thin solid films, vol297, no.1-2, pp. 192-201, 1997.
[25]Nelson, J. C., and R. A. Oriani., Stress generation during anodic oxidation of titanium and aluminum, Corrosion Science, vol.34, no.2, pp.307-326, 1993.
[26]Li, A. P., et al., Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, Journal of applied physics, vol.84, no.11, pp.6023-6026, 1998.
[27]張函郁and黎渝秀, 雞蛋的美麗與哀愁:奈米雞蛋與滲透雞蛋, 國立中央大學附屬中壢高級中學, 2018.
[28]Ma, Kuixiang, Tai‐Shung Chung, and Robert J. Good., Surface energy of thermotropic liquid crystalline polyesters and polyesteramide, Journal of Polymer Science Part B: Polymer Physics, vol.36, no.13, pp.2327-2337, 1998.
[29]Michael D. Shaw, A Look At DMSO: Wonder Drug Or Something Less? HealthNewsDigest.com, 2012.
[30]李安榮and 鄒台黎, 最新藥物學, 永大書局, p.373. 
[31]黃瑞雄and顏溪成, 漫談電化學, 《科學發展》359期, pp.22-27, 2002.
[32]Petr Vanýsek, Standard Redox Potential Table, Electrochemical Series, 2010.
[33]周映傑, 拋棄式奈米孔洞金銅合金電極之製備與應用, 國立中興大學化學研究所碩士論文, 2013.
[34]Zhu, Fu-Yun, et al., 3D nanostructure reconstruction based on the SEM imaging principle, and applications, Nanotechnology, vol.25, no.18 ,2014.
[35]Uo, Motohiro, Takahiro Wada, and Tomoko Sugiyama., Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens, Japanese Dental Science Review, vol.51, no.1, pp.2-9, 2015.
[36]林麗娟, X光繞射原理及其應用, X光材料分析技術與應用專題, 1994年.
[37]David C. Joy Brian J. Ford Savile Bradbury, Transmission electron microscope, Encyclopædia Britannica, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top