|
[1] B.H.Park, B.S.Kang, S.D.Bu, T.W.Noh, J.Lee, W.Jo, et al., “Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature, 401(6754), 682. ,1999, pp. 682-684. [2] Nishimura, N., Hirai, T., Koganei, A., Ikeda, T., Okano, K., Sekiguchi, Y., & Osada, Y. “ Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory, Journal of applied physics, 91(8) , 2002, pp.5246-5249. [3] Wu, H., Yao, P., Gao, B., Wu, W., Zhang, Q., Zhang, W. “Device and circuit optimization of RRAM for neuromorphic computing, IEEE International Electron Devices Meeting (IEDM), 2017, pp.5-11. [4] Ni, L., Huang, H., Liu, Z., Joshi, R. V., & Yu, H. “Distributed in-memory computing on binary RRAM crossbar, ACM Journal on Emerging Technologies in Computing Systems (JETC), 2017, pp.36. [5] Dongale, T. D., Patil, K. P., Mullani, S. B., More, K. V., Delekar, S. D., Patil, P. S. “Investigation of process parameter variation in the memristor based resistive random access memory (RRAM): Effect of device size variations, Materials Science in Semiconductor Processing, 2015, pp.174-180. [6] Lee, M. J., Park, Y., Kang, B. S., Ahn, S. E., Lee, C., Kim, K., “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications In 2007 IEEE International Electron Devices Meeting , 2007, pp.771-774. [7] Yang, Y. C., Pan, F., Liu, Q., Liu, M., & Zeng, F., “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application, Nano letters, 9(4), 2009, pp.1636-1643. [8] Chen, Y. S., Wu, T. Y., Tzeng, P. J., Chen, P. S., Lee, H. Y., Lin, C. H., “ Forming-free HfO 2 bipolar RRAM device with improved endurance and high speed operation, In 2009 International Symposium on VLSI Technology, Systems, and Applications , IEEE, 2009, pp.37-38. [9] Chen, Y. Y., Degraeve, R., Govoreanu, B., Clima, S., Goux, L., Fantini,. “Postcycling LRS retention analysis in HfO 2/Hf RRAM 1T1R device IEEE Electron Device Letters, 2013, pp.626-628. [10] Tanachutiwat, S., Liu, M., & Wang, W., “FPGA Based on Integration of CMOS and RRAM, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(11), 2010, pp.2023-2032. [11] Hourdakis, E., & Nassiopoulou, A. G., “ High-density MIM capacitors with porous anodic alumina dielectric IEEE Transactions on Electron Devices, 57(10), 2010, pp.2679-2683. [12] Yu, M., Cai, Y., Wang, Z., Fang, Y., Liu, Y., Yu, Z., “Novel vertical 3D structure of TaO x-based RRAM with self-localized switching region by sidewall electrode oxidation Scientific reports, 2016, pp. 21020. [13] Wu, Y., Lee, B., & Wong, H. S. P., “ Ultra-low power Al 2 O 3-based RRAM with 1μA reset current, In Proceedings of 2010 International Symposium on VLSI Technology, System and Application , IEEE, 2010, pp.136-137. [14] Liu, K. C., Tzeng, W. H., Chang, K. M., Chan, Y. C., Kuo, C. C., & Cheng, C. W., “Transparent resistive random access memory (T-RRAM) based on Gd 2 O 3 film and its resistive switching characteristics In 2010 3rd International Nanoelectronics Conference (INEC) IEEE, pp.898-899. [15] Cheng, C. H., Chin, A., & Yeh, F. S., “Novel ultra-low power RRAM with good endurance and retention In 2010 Symposium on VLSI Technology IEEE, 2010, pp. 85-86. [16] Wang, S. Y., Lee, D. Y., Huang, T. Y., Wu, J. W., & Tseng, T. Y., “Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer Nanotechnology, 21(49), 2010. [17] Park, J., Jo, M., Lee, J., Jung, S., Kim, S., Lee, W., “ Improved switching uniformity and speed in filament-type RRAM using lightning rod effect IEEE Electron Device Letters, 32(1), 2010, pp.63-65. [18] Gremaud, G. “ Dislocation-point defect interactions In Materials Science Forum Trans Tech Publications, 2001, Vol. 366, pp.178-246. [19] Ielmini, D. “Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth IEEE Transactions on Electron Devices, 58(12), pp.4309-4317. [20] Cagli, C., Ielmini, D., Nardi, F., & Lacaita, A. L. “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction In 2008 IEEE International Electron Devices Meeting IEEE, 2008, pp.1-4. [21] Long, S., Perniola, L., Cagli, C., Buckley, J., Lian, X., Miranda, E., “Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO 2-based RRAM Scientific reports, 3, 2013, pp.2929. [22] Tang, T., Xia, L., Li, B., Wang, Y., & Yang, H. “Binary convolutional neural network on RRAM In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) IEEE, 2017, pp.782-787. [23] Lakys, Y., Zhao, W., Klein, J. O., & Chappert, C. “MRAM crossbar based configurable logic block, In 2012 IEEE International Symposium on Circuits and Systems, 2012, pp.2945-2948. [24] Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. “Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction, Sensors, 2017, pp.818. [25] Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., & Ranzato, M. A. “Learning longer memory in recurrent neural networks, arXiv preprint arXiv:1412.7753, 2014. [26] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., & Alkon, D. L. “Accelerating the convergence of the back-propagation method Biological cybernetics, 1988, pp.257-263. [27] Engel, B. N., Akerman, J., Butcher, B., Dave, R. W., DeHerrera, M., Durlam, M., ... & Slaughter, J. M. “A 4-Mb toggle MRAM based on a novel bit and switching method, IEEE Transactions on Magnetics, 41(1), pp.132-136. [28] Lin, W. C., Tang, D. D., & Lai, L. S. “Segmented MRAM memory array U.S. Patent No. 7,203,129. Washington, DC: U.S. Patent and Trademark Office. [29] Zeinali, B., Madsen, J. K., Raghavan, P., & Moradi, F. “Ultra-Fast SOT-MRAM Cell with STT current for deterministic switching. In 2017 IEEE International Conference on Computer Design (ICCD) IEEE , 2017, pp.463-468. [30] Nian, J. N., Hu, C. C., & Teng, H. “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. International Journal of Hydrogen Energy, 33(12), 2008, pp.2897-2903. [31] Kudo, A., Yanagi, H., Hosono, H., & Kawazoe, H. “SrCu 2 O 2: A p-type conductive oxide with wide band gap Applied Physics Letters, pp.220-222. [32] Cembrero-Coca, P., Cembrero, J., Busquets-Mataix, D., Pérez-Puig, M. A., Marí, B., & Pruna, A. “ Factorial electrochemical design for tailoring of morphological and optical properties of Cu2O, Materials Science and Technology, 33(17), 2017, pp.2102-2109. [33] Baek, S. K., Kwon, Y. H., Shin, J. H., Lee, H. S., & Cho, H. K. “Low‐Temperature Processable High‐Performance Electrochemically Deposited p‐Type Cuprous Oxides Achieved by Incorporating a Small Amount of Antimony, Advanced Functional Materials, 2015, pp.5214-5221. [34] Bijani, S., Martinez, L., Gabás, M., Dalchiele, E. A., & Ramos-Barrado, J. R. “ Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH, The Journal of Physical Chemistry C, 113(45), 2009, pp.19482-19487. [35] Ko, E., Choi, J., Okamoto, K., Tak, Y., & Lee, J. “Cu2O nanowires in an alumina template: Electrochemical conditions for the synthesis and photoluminescence characteristics Chemphyschem: a European journal of chemical physics and physical chemistry, 7(7), 2006, pp.1505-1509. [36] Long, S., Perniola, L., Cagli, C., Buckley, J., Lian, X., Miranda, E. “Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO 2-based RRAM, Scientific reports, 3, 2013, pp.2929. [37] Miyazaki, T., & Tezuka, N. “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction Journal of Magnetism and Magnetic Materials, 139(3), 1995, pp.231-234. [38] Chang, K. C., Pan, C. H., Chang, T. C., Tsai, T. M., Zhang, R., Lou, J. C., “Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO 2 fluid treatment IEEE Electron Device Letters, 34(5), 2013, pp.617-619. [39] Chiu, F. C. “ A review on conduction mechanisms in dielectric films, Advances in Materials Science and Engineering, 2014. [40] Emtage, P. R., & Tantraporn, W. “Schottky emission through thin insulating films Physical Review Letters, 8(7), 1962, pp.267. [41] Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., & Chen, J. “Resistive switching memory effect of Zr O 2 films with Zr+ implanted Applied physics letters, 2008, pp.012117. [42] Lampert, M. A., & Mark, P. “Current injection in solids, 1970. [43] Zhang, F., Zhang, H., Krylyuk, S., Milligan, C. A., Zhu, Y., Zemlyanov, D. Y. “Electric-field induced structural transition in vertical MoTe 2-and Mo 1–x W x Te 2-based resistive memories Nature materials, 18(1), pp.55. [44] D. Nicholls, “Complexes and First-Row Transition Elements, Macmillan Press, London, 1973. [45] N. N. Greenwood, A. Earnshaw, “Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, UK, 1997. [46] J.J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, Phys. Rev. 112, 1958, pp.1555. [47] Yazdanparast, S., Koza, J. A., & Switzer, J. A. Copper nanofilament formation during unipolar resistance switching of electrodeposited cuprous oxide. Chemistry of Materials, 27(17), 2015, pp.5974-5981. [48] Bijani, S., Martinez, L., Gabás, M., Dalchiele, E. A., & Ramos-Barrado, J. R. Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH. The Journal of Physical Chemistry C, 113(45), 2009, pp.19482-19487. [49] Zhang, L., Xu, H. Y., Wang, Z. Q., Yu, H., Zhao, X. N., Ma, J. G., & Liu, Y. C. Oxygen-concentration effect on p-type CuAlOx resistive switching behaviors and the nature of conducting filaments. Applied Physics Letters, 104(9), 2014, pp.93512. [50] Baek, S. K., Kwak, S. S., Kim, J. S., Kim, S. W., & Cho, H. K. Binary Oxide pn Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer. ACS applied materials & interfaces, 8(34), 2019, pp.22135-22141. [51] Yin, M., Zhou, P., Lv, H. B., Tang, T. A., Chen, B. A., Lin, Y. Y., ... & Chi, M. H. Enhancement of endurance for Cu x O based RRAM cell. In 2008 9th International Conference on Solid-State and Integrated-Circuit Technology IEEE, 2008, pp.917-920. [52] Janipour, M., Karami, M. A., Sofiani, R., & Kashani, F. H. A novel adjustable plasmonic filter realization by split mode ring resonators. Journal of Electromagnetic Analysis and Applications, 5(12), 2013, pp.405.
[53] Prakash, A., & Hwang, H. Multilevel cell storage and resistance variability in resistive random access memory. Physical Sciences Reviews, 1(6). 2016.
[54] Sun, P., Lu, N., Li, L., Li, Y., Wang, H., Lv, H., ... & Liu, M. Thermal crosstalk in 3-dimensional RRAM crossbar array. Scientific reports, 5, 2015, pp.13504.
[55] Simanjuntak, F. M., Panda, D., Wei, K. H., & Tseng, T. Y. Status and prospects of ZnO-based resistive switching memory devices. Nanoscale research letters, 11(1), 2016, pp.368.
[56] Chiu, F. C. A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014. 2014.
|