跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晟
研究生(外文):ChengLee
論文名稱:具有金屬奈米顆粒之三氧化鎢系氣體感測器之研製
論文名稱(外文):Fabrication of Tungsten Trioxide (WO3) Based Gas Sensors with Metal Nanoparticles
指導教授:劉文超劉文超引用關係林坤瑋林坤瑋引用關係
指導教授(外文):Wen-Chau LiuKun-Wei Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:95
中文關鍵詞:氣體感測器三氧化鎢奈米粒子溢出效應
外文關鍵詞:Gas sensorsTungsten trioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去幾年中,由於簡單性,可靠性,成本效益和批量生產可行性,各種金屬氧化物半導體(MOS)感測器已被廣泛研究並用於量測。三氧化鎢(WO3)是用於氧化物半導體的氣體感測器並且用於商業裝置研究最多的材料之一。它在檢測氫氣,甲醛和一氧化氮方面具有良好的性能。基於三氧化鎢(WO3)的氣體感測器由於其結構簡單,成本低,可靠性好以及相對於其他氣體感測器裝置易於製造而引起了極大關注。此外,本研究還將通過X射線繞射儀(XRD),掃描電子顯微鏡(SEM),能量色散X射線光譜儀(EDS)和原子力分析顯微鏡(AFM)來分析三氧化鎢(WO3)氣體感測器的元件結構,表面形貌和元素組成。
Over the past several years, various metal oxide semiconductor (MOS) sensors have been extensively studied and used for detection because of the simplicity, reliability, cost-effectiveness, and mass-production availability. Tungsten trioxide (WO3) is one of the most investigated materials for semiconducting oxide gas sensors and used in commercial devices. It offers a good performance in the detection of H2, HCHO, and NO. Tungsten trioxide (WO3)-based gas sensor have attracted significant attention of the researchers due to their simple structure, low cost, good reliability and easy fabrication process respect to other gas sensor devices. In addition, this study will analyze the device structure, surface morphology and elemental composition of WO3 based gas sensors by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersion X-ray spectrometer (EDS), and atomic force microscope (AFM).
Table List
Figure Captions
Chapter 1 Introduction
1.1 Introduction of Gas Sensors 1
1.2 Tungstn Trioxide (WO3) 2
1.3 Sensing Mechanisms 3
1.3.1 Hydrogen Sensing Mechanism 3
1.3.2 Formaldehyde Sensing Mechanism 4
1.3.3 Nitric Oxide Sensing Mechanism 4
Chapter 2 Gas Sensors Based on Thermal Evaporated-Pd Nanoparticles (NPs)
2.1 Introduction 5
2.2 Experimental Processes 6
2.2.1 Device Fabrication 6
2.2.2 Thermal Evaporated-Pd Nanoparticles 7
2.2.3 Sensing Measurement 7
2.2.4 Analytical Equipment 8
2.3 Experimental Results and Discussion 9
2.3.1 Hydrogen Sensing Characteristics 9
2.3.2 Structural and Morphological Characteristics 12
2.4 Summary 13
Chapter 3 Gas Sensors Based on Thermal Evaporated-Au Nanoparticles (NPs)
3.1 Introduction 14
3.2 Experimental Processes 15
3.2.1 Device Fabrication 15
3.2.2 Thermal Evaporated-Au Nanoparticles 16
3.2.3 Sensing Measurement 16
3.2.4 Analytical Equipment 17
3.3 Experimental Results and Discussion 17
3.3.1 Formaldehyde Sensing Characteristics 17
3.3.2 Structural and Morphological Characteristics 20
3.4 Summary 21
Chapter 4 Gas Sensors Based on Thermal Evaporated-Ag Nanoparticles (NPs)
4.1 Introduction 22
4.2 Experimental Processes 22
4.2.1 Device Fabrication 22
4.2.2 Thermal Evaporated-Ag Nanoparticles 23
4.2.3 Sensing Measurement 23
4.2.4 Analytical Equipment 24
4.3 Experimental Results and Discussion 24
4.3.1 Nitric Oxide Sensing Characteristics 24
4.3.2 Structural and Morphological Characteristics 27
4.4 Summary 28
Chapter 5 Conclusion and Prospect
5.1 Conclusion 29
5.2 Prospect 29
Reference 31
[1] X. Xing, Y. Li, D. Deng, N. Chen, X. Liu, X. Xiao, and Y. Wang, Ag-functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application, RSC Advances, vol. 6, pp. 101304-101312, 2016.
[2] C. Jia, S. Batterman, and C. Godwin, VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers, Atmospheric Environment, vol. 42, pp. 2083-2100, 2008.
[3] M. Leidinger, T. Sauerwald, T. Conrad, W. Reimringer, G. Ventura, and A. Schütze, Selective detection of hazardous indoor VOCs using metal oxide gas sensors, Procedia Engineering, vol. 87, pp. 1449-1452, 2014.
[4] E. Rossinyol, J. Arbiol, F. Peiró, A. Cornet, J.R. Morante, B. Tian, T. Bo, and D. Zhao, Nanostructured metal oxides synthesized by hard template method for gas sensing applications, Sensors and Actuators B: Chemical, vol. 109, pp. 57-63, 2005.
[5] G. Chaudhari, A. Bende, A. Bodade, S. Patil, and V. Sapkal, Structural and gas sensing properties of nanocrystalline TiO2: WO3-based hydrogen sensors, Sensors and Actuators B: Chemical, vol. 115, pp. 297-302, 2006.
[6] Y. Wang, X. Wu, Y. Li, and Z. Zhou, Mesostructured SnO2 as sensing material for gas sensors, Solid-State Electronics, vol. 48, pp. 627-632, 2004.
[7] G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, and J. Morante, Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis, Thin Solid Films, vol. 436, pp. 119-126, 2003.
[8] R. Dolbec, and M. El Khakani, Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2: Pt based sensors, Applied physics letters, vol. 90, pp. 173114, 2007.
[9] S. Durrani, E. Khawaja, and M. Al-Kuhaili, CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation, Talanta, vol. 65, pp. 1162-1167, 2005.
[10] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, and N. Nakatani, Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films, Sensors and Actuators B: Chemical, vol. 128, pp. 173-178, 2007.
[11] M. Gillet, K. Aguir, M. Bendahan, and P. Mennini, Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone, Thin Solid Films, vol. 484, pp. 358-363, 2005.
[12] C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, A new preparation method for sputtered MoO3 multilayers for the application in gas sensors, Sensors and Actuators B: Chemical, vol. 78, pp. 119-125, 2001.
[13] T. Yamazaki, C. Jin, A. Nakayama, K. Ito, T. Yoshizawa, T. Kikuta, N. Nakatani, and T. Yamabuchi, NO2 gas sensor made of porous MoO3 sputtered films, Japanese journal of applied physics, vol. 44, pp. 792, 2005.
[14] Y. Shimizu, T. Hyodo, and M. Egashira, H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode, Sensors and Actuators B: Chemical, vol. 121, pp. 219-230, 2007.
[15] J.-I. Yang, H. Lim, and S.-D. Han, Influence of binders on the sensing and electrical characteristics of WO3-based gas sensors, Sensors and Actuators B: Chemical, vol. 60, pp. 71-77, 1999.
[16] D. Davazoglou, and T. Dritsas, Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates: Application to H2 sensing, Sensors and Actuators B: Chemical, vol. 77, pp. 359-362, 2001.
[17] J. Xu, X. Jia, X. Lou, G. Xi, J. Han, and Q. Gao, Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3, Sensors and Actuators B: Chemical, vol. 120, pp. 694-699, 2007.
[18] M. Penza, M. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor, Sensors and Actuators B: Chemical, vol. 50, pp. 9-18, 1998.
[19] T.S. Kim, Y.B. Kim, K.S. Yoo, G.S. Sung, and H.J. Jung, Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor, Sensors and Actuators B: Chemical, vol. 62, pp. 102-108, 2000.
[20] Z. Liu, M. Miyauchi, T. Yamazaki, and Y. Shen, Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres, Sensors and Actuators B: Chemical, vol. 140, pp. 514-519, 2009.
[21] X. Wang, N. Miura, and N. Yamazoe, Study of WO3-based sensing materials for NH3 and NO detection, Sensors and Actuators B: Chemical, vol. 66, pp. 74-76, 2000.
[22] L. LeGore, K. Snow, J. Galipeau, and J. Vetelino, The optimization of a tungsten trioxide film for application in a surface acoustic wave gas sensor, Sensors and Actuators B: Chemical, vol. 35, pp. 164-169, 1996.
[23] R. Ionescu, A. Hoel, C. Granqvist, E. Llobet, and P. Heszler, Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors, Sensors and Actuators B: Chemical, vol. 104, pp. 132-139, 2005.
[24] W.-H. Tao, and C.-H. Tsai, H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining, Sensors and Actuators B: Chemical, vol. 81, pp. 237-247, 2002.
[25] M. Tong, G. Dai, and D. Gao, WO3 thin film sensor prepared by sol–gel technique and its low-temperature sensing properties to trimethylamine, Materials Chemistry and Physics, vol. 69, pp. 176-179, 2001.
[26] C. Xu, N. Miura, Y. Ishida, K. Matsuda, and N. Yamazoe, Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element, Sensors and Actuators B: Chemical, vol. 65, pp. 163-165, 2000.
[27] D.E. Williams, Semiconducting oxides as gas-sensitive resistors, Sensors and Actuators B: Chemical, vol. 57, pp. 1-16, 1999.
[28] M. Bendahan, R. Boulmani, J. Seguin, and K. Aguir, Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas, and working temperature, Sensors and actuators B: Chemical, vol. 100, pp. 320-324, 2004.
[29] C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G. Faglia, and G. Sberveglieri, Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol–gel, thermal evaporation and rf sputtering techniques, Sensors and Actuators B: Chemical, vol. 64, pp. 182-188, 2000.
[30] M. Akiyama, J. Tamaki, N. Miura, and N. Yamazoe, Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2, Chemistry Letters, vol. 20, pp. 1611-1614, 1991.
[31] E. Llobet, G. Molas, P. Molinas, J. Calderer, X. Vilanova, J. Brezmes, J. Sueiras, and X. Correig, Fabrication of highly selective tungsten oxide ammonia sensors, Journal of the Electrochemical Society, vol. 147, pp. 776-779, 2000.
[32] K. Kanda, and T. Maekawa, Development of a WO3 thick-film-based sensor for the detection of VOC, Sensors and Actuators B: Chemical, vol. 108, pp. 97-101, 2005.
[33] C. Zhang, A.-F. Kanta, H. Yin, A. Boudiba, J. D'haen, M.-G. Olivier, and M. Debliquy, H2 sensors based on WO3 thin films activated by platinum nanoparticles synthesized by electroless process, International Journal of Hydrogen Energy, vol. 38, pp. 2929-2935, 2013.
[34] V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, International Journal of Hydrogen Energy, vol. 32, pp. 1145-1158, 2007.
[35] N. Al-Hardan, M. Abdullah, and A.A. Aziz, The gas response enhancement from ZnO film for H2 gas detection, Applied Surface Science, vol. 255, pp. 7794-7797, 2009.
[36] W.J. Buttner, M.B. Post, R. Burgess, and C. Rivkin, An overview of hydrogen safety sensors and requirements, International Journal of Hydrogen Energy, vol. 36, pp. 2462-2470, 2011.
[37] I. Kosc, I. Hotovy, V. Rehacek, R. Griesseler, M. Predanocy, M. Wilke, and L. Spiess, Sputtered TiO2 thin films with NiO additives for hydrogen detection, Applied Surface Science, vol. 269, pp. 110-115, 2013.
[38] S. Linke, M. Dallmer, R. Werner, and W. Moritz, Low energy hydrogen sensor, international journal of hydrogen energy, vol. 37, pp. 17523-17528, 2012.
[39] J.E. Lee, D.Y. Kim, H.-K. Lee, H.J. Park, A. Ma, S.-Y. Choi, and D.-S. Lee, Sonochemical synthesis of HKUST-1-based CuO decorated with Pt nanoparticles for formaldehyde gas-sensor applications, Sensors and Actuators B: Chemical, vol. 292, pp. 289-296, 2019.
[40] T. Salthammer, S. Mentese, and R. Marutzky, Formaldehyde in the indoor environment, Chemical reviews, vol. 110, pp. 2536-2572, 2010.
[41] P.-R. Chung, C.-T. Tzeng, M.-T. Ke, and C.-Y. Lee, Formaldehyde gas sensors: a review, Sensors, vol. 13, pp. 4468-4484, 2013.
[42] J. Zhang, J. Hu, F. Zhu, H. Gong, and S. O’shea, ITO thin films coated quartz crystal microbalance as gas sensor for NO detection, Sensors and Actuators B: Chemical, vol. 87, pp. 159-167, 2002.
[43] F.L. Kiechle, and T. Malinski, Nitric oxide: biochemistry, pathophysiology, and detection, American Journal of Clinical Pathology, vol. 100, pp. 567-575, 1993.
[44] J.S. Beckman, J. Chen, H. Ischiropoulos, and J.P. Crow, [23] oxidative chemistry of peroxynitrite, Methods in enzymology, Elsevier1994, pp. 229-240.
[45] F. Amano, D. Li, and B. Ohtani, Fabrication and photoelectrochemical property of tungsten (VI) oxide films with a flake-wall structure, Chemical Communications, vol. 46, pp. 2769-2771, 2010.
[46] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, and Z.L. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Applied Physics Letters, vol. 88, pp. 203101, 2006.
[47] J. Zhou, L. Gong, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, R. Yang, and Z.L. Wang, Growth and field-emission property of tungsten oxide nanotip arrays, Applied physics letters, vol. 87, pp. 223108, 2005.
[48] D. Le Bellac, A. Azens, and C. Granqvist, Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering, Applied physics letters, vol. 66, pp. 1715-1716, 1995.
[49] M. Qamar, M. Gondal, and Z. Yamani, Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water, Catalysis Communications, vol. 10, pp. 1980-1984, 2009.
[50] J. Wang, E. Khoo, P.S. Lee, and J. Ma, Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte, The Journal of Physical Chemistry C, vol. 113, pp. 9655-9658, 2009.
[51] J. Wang, E. Khoo, P.S. Lee, and J. Ma, Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods, The Journal of Physical Chemistry C, vol. 112, pp. 14306-14312, 2008.
[52] H.-T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, and M. Pelino, Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators, Thin Solid Films, vol. 287, pp. 258-265, 1996.
[53] S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, and E.W. McFarland, Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films, Advanced Materials, vol. 15, pp. 1269-1273, 2003.
[54] C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications, Journal of the American Chemical Society, vol. 123, pp. 10639-10649, 2001.
[55] N. Yamazoe, K. Suematsu, and K. Shimanoe, Surface chemistry of neat tin oxide sensor for response to hydrogen gas in air, Sensors and Actuators B: Chemical, vol. 227, pp. 403-410, 2016.
[56] R. Ab Kadir, Z. Li, A.Z. Sadek, R. Abdul Rani, A.S. Zoolfakar, M.R. Field, J.Z. Ou, A.F. Chrimes, and K. Kalantar-Zadeh, Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures, The Journal of Physical Chemistry C, vol. 118, pp. 3129-3139, 2014.
[57] A. De Marcellis, G. Ferri, P. Mantenuto, L. Giancaterini, and C. Cantalini, ${
m WO} _ {3} $ Hydrogen Resistive Gas Sensor and Its Wide-Range Current-Mode Electronic Read-Out Circuit, IEEE Sensors Journal, vol. 13, pp. 2792-2798, 2013.
[58] Y.H. Kahng, W. Lu, R. Tobin, R. Loloee, and R.N. Ghosh, The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study, Journal of Applied Physics, vol. 105, pp. 064511, 2009.
[59] T. Chen, Q. Liu, Z. Zhou, and Y. Wang, The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity, Sensors and Actuators B: Chemical, vol. 131, pp. 301-305, 2008.
[60] C. Samanta, A. Ghatak, A. Raychaudhuri, and B. Ghosh, ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb, Nanotechnology, vol. 30, pp. 305501, 2019.
[61] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, Distributed hydrogen determination with fiber-optic sensor, Sensors and Actuators B: Chemical, vol. 108, pp. 508-514, 2005.
[62] C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing, Sensors, vol. 10, pp. 7705-7715, 2010.
[63] J. Zhou, N.S. Xu, and Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures, Advanced Materials, vol. 18, pp. 2432-2435, 2006.
[64] C. Liu, Q. Kuang, Z. Xie, and L. Zheng, The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: A case study on the {221} high-index faceted SnO2 octahedra, CrystEngComm, vol. 17, pp. 6308-6313, 2015.
[65] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd, Sensors and Actuators B: Chemical, vol. 83, pp. 195-201, 2002.
[66] C.-W. Lin, H.-I. Chen, T.-Y. Chen, C.-C. Huang, C.-S. Hsu, and W.-C. Liu, Ammonia sensing characteristics of sputtered indium tin oxide (ITO) thin films on quartz and sapphire substrates, IEEE Transactions on Electron Devices, vol. 58, pp. 4407-4413, 2011.
[67] H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, H2 gas sensor performance of NiO at high temperatures in gas mixtures, Sensors and Actuators B: Chemical, vol. 151, pp. 162-168, 2010.
[68] H.-I. Chen, C.-Y. Hsiao, W.-C. Chen, C.-H. Chang, T.-C. Chou, I.-P. Liu, K.-W. Lin, and W.-C. Liu, Characteristics of a Pt/NiO thin film-based ammonia gas sensor, Sensors and Actuators B: Chemical, vol. 256, pp. 962-967, 2018.
[69] G.B. Pour, and L.F. Aval, Monitoring of hydrogen concentration using capacitive nanosensor in a 1% H2–N2 mixture, Micro & Nano Letters, vol. 13, pp. 149-153, 2018.
[70] G.B. Pour, L.F. Aval, and S. Eslami, Sensitive capacitive-type hydrogen sensor based on Ni thin film in different hydrogen concentrations, Current nanoscience, vol. 14, pp. 136-142, 2018.
[71] M. Penza, C. Martucci, and G. Cassano, NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, Sensors and Actuators B: Chemical, vol. 50, pp. 52-59, 1998.
[72] D.-S. Lee, S.-D. Han, J.-S. Huh, and D.-D. Lee, Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor, Sensors and Actuators B: Chemical, vol. 60, pp. 57-63, 1999.
[73] J. Zhang, X. Liu, M. Xu, X. Guo, S. Wu, S. Zhang, and S. Wang, Pt clusters supported on WO3 for ethanol detection, Sensors and Actuators B: Chemical, vol. 147, pp. 185-190, 2010.
[74] V. Srivastava, and K. Jain, Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films, Sensors and Actuators B: Chemical, vol. 133, pp. 46-52, 2008.
[75] T.-C. Chou, C.-H. Chang, C. Lee, and W.-C. Liu, Ammonia sensing characteristics of a tungsten trioxide thin-film-based sensor, IEEE Transactions on Electron Devices, vol. 66, pp. 696-701, 2018.
[76] S. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, and W. Wlodarski, Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts, Sensors and Actuators B: Chemical, vol. 108, pp. 154-158, 2005.
[77] C. Zhang, A. Boudiba, C. Navio, C. Bittencourt, M.-G. Olivier, R. Snyders, and M. Debliquy, Highly sensitive hydrogen sensors based on co-sputtered platinum-activated tungsten oxide films, international journal of hydrogen energy, vol. 36, pp. 1107-1114, 2011.
[78] T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films, Sensors and Actuators B: Chemical, vol. 157, pp. 290-297, 2011.
[79] A. Sutka, M. Stingaciu, G. Mezinskis, and A. Lusis, An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor, Journal of Materials Science, vol. 47, pp. 2856-2863, 2012.
[80] B.-Y. Ke, and W.-C. Liu, Enhancement of Hydrogen Sensing Performance of a Pd Nanoparticle/Pd Film/GaOₓ/GaN-Based Metal-Oxide-Semiconductor Diode, IEEE Transactions on Electron Devices, vol., pp. 1-8, 2018.
[81] H.-I. Chen, K.-C. Chuang, C.-H. Chang, W.-C. Chen, I.-P. Liu, and W.-C. Liu, Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode, Sensors and Actuators B: Chemical, vol. 246, pp. 408-414, 2017.
[82] Z. Hua, M. Yuasa, T. Kida, N. Yamazoe, and K. Shimanoe, High sensitive gas sensor based on Pd-loaded WO3 nanolamellae, Thin Solid Films, vol. 548, pp. 677-682, 2013.
[83] G.B. Pour, and L.F. Aval, Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature, Results Phys, vol. 7, pp. 1993-1999, 2017.
[84] I. Sta, M. Jlassi, M. Kandyla, M. Hajji, P. Koralli, F. Krout, M. Kompitsas, and H. Ezzaouia, Surface functionalization of sol–gel grown NiO thin films with palladium nanoparticles for hydrogen sensing, international journal of hydrogen energy, vol. 41, pp. 3291-3298, 2016.
[85] J. Moon, H.-P. Hedman, M. Kemell, A. Tuominen, and R. Punkkinen, Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate, Sensors and Actuators B: Chemical, vol. 222, pp. 190-197, 2016.
[86] N. Van Toan, N.V. Chien, N. Van Duy, H.S. Hong, H. Nguyen, N.D. Hoa, and N. Van Hieu, Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands, Journal of hazardous materials, vol. 301, pp. 433-442, 2016.
[87] J. Dhakshinamoorthy, and B. Pullithadathil, New insights towards electron transport mechanism of highly efficient p-Type CuO (111) nanocuboids-based H2S gas sensor, The Journal of Physical Chemistry C, vol. 120, pp. 4087-4096, 2016.
[88] J. Wang, X. Sun, H. Huang, Y. Lee, O. Tan, M. Yu, G. Lo, and D. Kwong, A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Applied Physics A, vol. 88, pp. 611-615, 2007.
[89] R.W. Scott, S. Yang, G. Chabanis, N. Coombs, D. Williams, and G. Ozin, Tin dioxide opals and inverted opals: near‐ideal microstructures for gas sensors, Advanced Materials, vol. 13, pp. 1468-1472, 2001.
[90] S. Wei, Y. Zhang, and M. Zhou, Formaldehyde sensing properties of ZnO-based hollow nanofibers, Sensor Review, vol. 34, pp. 327-334, 2014.
[91] S. Choopun, N. Hongsith, P. Mangkorntong, and N. Mangkorntong, Zinc oxide nanobelts by RF sputtering for ethanol sensor, Physica E: Low-dimensional Systems and Nanostructures, vol. 39, pp. 53-56, 2007.
[92] C. Li, Z. Du, L. Li, H. Yu, Q. Wan, and T. Wang, Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature, Applied Physics Letters, vol. 91, pp. 032101, 2007.
[93] N. Hongsith, E. Wongrat, T. Kerdcharoen, and S. Choopun, Sensor response formula for sensor based on ZnO nanostructures, Sensors and Actuators B: Chemical, vol. 144, pp. 67-72, 2010.
[94] W. Zhang, H. Uchida, T. Katsube, T. Nakatsubo, and Y. Nishioka, A novel semiconductor NO gas sensor operating at room temperature, Sensors and Actuators B: Chemical, vol. 49, pp. 58-62, 1998.
[95] M. Penza, and L. Vasanelli, SAW NOx gas sensor using WO3 thin-film sensitive coating, Sensors and Actuators B: Chemical, vol. 41, pp. 31-36, 1997.
[96] L. Chen, and S.C. Tsang, Ag doped WO3-based powder sensor for the detection of NO gas in air, Sensors and Actuators B: Chemical, vol. 89, pp. 68-75, 2003.
[97] J. Xu, X. Jia, X. Lou, G. Xi, J. Han, Q. Gao, Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3, Sensors and Actuators B: Chemical, vol. 120, pp. 694-699, 2007.
[98] C. Gu, W. Guan, X. Liu, L. Gao, L. Wang, J.-J. Shim, J. Huang, Controlled synthesis of porous Ni-doped SnO2 microstructures and their enhanced gas sensing properties, J. Alloys Compd., vol. 692, pp. 855-864, 2017.
[99] X. Chua, T. Chena, W. Zhanga, B. Zhenga, H. Shuia, Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method, Sensors and Actuators B: Chemical, vol. 142, pp. 49-54, 2009.
[100] C. Xiea, L. Xiaoa, M. Hua, Z. Baib, X. Xiaa, D. Zeng, Fabrication and formaldehyde gas-sensing property of ZnO–MnO2 coplanar gas sensor arrays, Sensors and Actuators B: Chemical, vol. 145, pp. 457-463, 2010.
[101] N. Li, Y. Fan, Y. Shi, Q. Xiang, X. Wang, J. Xu, A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism, Sensors and Actuators B: Chemical, vol. 294 pp. 106-115, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊