跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:毛彥翔
研究生(外文):YenShiangMao
論文名稱:超3奈米單晶鑽石之製作及其分散及聚合特性
論文名稱(外文):Fabrication of Sub-3nm Crystalline Diamond and Its Dispersion and Aggregation Properties
指導教授:曾永華曾永華引用關係
指導教授(外文):Yonhua Tzeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:奈米鑽石大氣氧化珠補助超音波分散
外文關鍵詞:Nanodiamondair annealingbead-assisted sonic disintegration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相較於其他奈米碳的成員,奈米鑽石是近年來才開始受到廣泛的關注,儘管如此,通過爆炸法產生的奈米鑽石粒子至今為止也發現了許多應用,其無毒、良好的生物與化學惰性等良好的特性,使其在生物醫學與電子應用上被視為是理想的材料。這些透過爆炸法產生的奈米鑽石其粒徑通常大於3奈米,而另一方面,石油中存在著小於兩奈米的分子鑽石,其中,雖然只包含10個碳原子的鑽石烷能有效的從石油中分離,但隨著尺寸增加,可從自然界獲得的量急劇地減少,因此,透過額外技術製作的奈米鑽石來填補奈米鑽石與分子之間的尺寸間隙正是本論文主要的目標。
透過爆炸法產生的奈米鑽石,其顆粒間通常以相干界面庫侖相互作用或非相干的界面庫侖相互作用形成緊密結合的團聚體,造成其應用上的困難,雖然透過強大的驅動力將緊密的聚集體分散,但同時容易造成更多石墨碳的產生。本篇論文透過在大氣環境下進行500°C的退火,一方面氧化奈米鑽石並使其粒徑尺寸縮小,另一方面使奈米鑽石之間的結合強度下降,隨後進行珠補助的超音波分散後,獲得穩定的超3奈米鑽石溶液,並仍保持高sp3/sp2碳的比例。此外,藉由不同狀態下的退火,研究奈米鑽石在退火中靜電力造成的團聚狀態的變化。
Compared with other members of nanocarbon, nanodiamond has only recently attract extensive attention. Nevertheless, Nanodiamond particles produced by detonation have found a very broad spectrum of applications. Its excellent properties such as non-toixc, biocompatibility and chemical inertness make it an ideal material for biomedical and electronic applications. These nanodiamond produced by detonation are usually lager than 3nm in size. On the other hand, the molecular diamond is termed diamondiods of less than 2nm in size confirmed that it exists in petroleum. Although the most smallest diamondoids known as adamantane containing only 10 carbon atoms can be effectively separated from petroleum, diamondoids which can be obtained from nature decrease in quantity rapidly with increase molecular size. Therefore, the main purpose of this thesis is filling the size gap between molecular diamond and the nanodiamond.
Nanodiamond particles produced by detonation usually form agglutinates with hard tight bonding due to coherent interfacial Coulombic interactions (CICIs) or incoherent interfacial Coulombic interactions(IICIs),and make significant obstacle in application. Although the hard bonding aggregates can be deaggregated by a strong driving force, it will make more graphitic carbon.
  In this thesis, the nanodiamond is treated by annealing at 500°C in air and decrease the size of nanodiamond by oxidation. On the other hand, the bonding force between particles would be decrease. The bead-assisted sonic disintegration(BASD) is used to deaggregation of oxidized nanodiamond. Finally, we receive stable nanodiamond solution. In addition,the the condition of aggregation due to electrostatic force is study by annealing in different condition of experiment.
摘要 i
Abstract ii
致謝 viii
目錄 ix
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1前言 1
1.2鑽石介紹 1
1.2.1鑽石的特性 3
1.2.2奈米鑽石 6
1.2.3奈米鑽石的分類: 7
1.2.4鑽石的合成: 9
第二章 文獻回顧 14
2.1形成、熱力學與相位轉化 14
2.2 爆炸合成奈米鑽石 15
2.3 奈米鑽石的純化 18
2.3.1 液相純化法 18
2.2.2 氣相純化法 19
2.2.3 電漿純化 21
2.3 氧化動力學 23
2.4 自限式氧化 27
2.5 奈米鑽石的團聚 28
2.6 分散奈米鑽石 31
2.6.1 介質補助濕研磨 31
2.6.2 介質補助乾研磨 33
第三章 實驗方法與步驟 35
3.1實驗流程圖 35
3.2奈米鑽石粉末 36
3.3奈米鑽石純化 37
3.4縮小奈米鑽石 38
3.5分散處理奈米鑽石 38
3.6奈米鑽石尺寸測量 39
3.6.1高解析場發射穿透式顯微鏡(High-Resolution Transmission Electron Microscopy) 39
3.6.2動態光散射儀(Dymanic Light Scattering) 40
3.7奈米鑽石特性分析 41
3.7.1拉曼光譜儀(Raman Spectrometer) 41
3.7.2能量色散X-射線光譜(Energy-Dispersive X-ray Spectroscopy,EDS) 44
3.8製程設備介紹 45
3.8.1高溫爐(Furnaces) 45
3.8.2微波電漿輔助氣相化學沉積(Microwave Plasma Chemical Vapor Deposition,MPCVD) 45
3.8.3其他製程儀器介紹 47
第四章 實驗結果與討論 48
4.1純化奈米鑽石的成分分析 48
4.2大氣氧化對於奈米鑽石的影響 51
4.2.1 大氣退火於400°C 51
4.2.2 大氣退火於420°C 54
4.2.3 大氣退火於500°C 55
4.3 奈米鑽石尺寸分析 57
4.3.1 TEM分析與統計 57
4.3.2 動態光散射(DLS)量測 63
4.4 聚集與分散機制探討 64
4.4.1去水奈米鑽石溶液的重新凝聚 65
4.4.2氧化中聚合機制的改變 67
4.5 奈米鑽石膠體溶液的特性 75
第五章 結論與未來展望 77
第六章 參考文獻 78
[1]E. Ōsawa, Monodisperse single nanodiamond particulates, Pure and Applied Chemistry, vol. 80, no. 7, pp. 1365-1379, 2008.
[2]V. V. Danilenko, On the history of the discovery of nanodiamond synthesis, ed: Springer, 2004.
[3]A. Krueger, Beyond the shine: recent progress in applications of nanodiamond, Journal of materials chemistry, vol. 21, no. 34, pp. 12571-12578, 2011.
[4]V. Vaijayanthimala and H. Chang, Functionalized fluorescent nanodiamonds for biomedical applications, Future Medicine, 2009.
[5]A. Krueger, Diamond nanoparticles: jewels for chemistry and physics, Advanced Materials, vol. 20, no. 12, pp. 2445-2449, 2008.
[6]K. B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1861, pp. 2845-2861, 2007.
[7]M. Ivanov, S. Pavlyshko, D. Ivanov, I. Petrov, and O. Shenderova, Synergistic compositions of colloidal nanodiamond as lubricant-additive, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 28, no. 4, pp. 869-877, 2010.
[8]A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications, Critical reviews in solid state and materials sciences, vol. 34, no. 1-2, pp. 18-74, 2009.
[9]K. D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, and Y. Gogotsi, Nanodiamond-polymer composite fibers and coatings, ACS nano, vol. 3, no. 2, pp. 363-369, 2009.
[10]Q. Zhang et al., Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, vol. 32, no. 1, pp. 87-94, 2011.
[11]V. N. Mochalin et al., Adsorption of drugs on nanodiamond: toward development of a drug delivery platform, Molecular pharmaceutics, vol. 10, no. 10, pp. 3728-3735, 2013.
[12]D. Saada, Diamond and Graphite Properties, Israel institute of technology department of physic, 2000.
[13]https://www.chemicool.com/elements/carbon.html.
[14]S.-T. Lee, Z. Lin, and X. Jiang, CVD diamond films: nucleation and growth, Materials Science and Engineering: R: Reports, vol. 25, no. 4, pp. 123-154, 1999.
[15]J. C. Angus, Diamond and diamond-like films, Thin Solid Films, vol. 216, no. 1, pp. 126-133, 1992.
[16]K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology. John Wiley & Sons, 1994.
[17]Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, Diamond semiconductor technology for RF device applications, Solid-state electronics, vol. 49, no. 7, pp. 1055-1070, 2005.
[18]K. Kobashi, Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier, 2010.
[19]R. F. Davis, Diamond films and coatings, Noyes Publications(USA), 1993, p. 435, 1993.
[20]T. A. Grotjohn and J. Asmussen, Microwave plasma-assisted diamond film deposition, Diamond films handbook, pp. 243-260, 2002.
[21]M. Liu, V. I. Artyukhov, H. Lee, F. Xu, and B. I. Yakobson, Carbyne from first principles: chain of C atoms, a nanorod or a nanorope, ACS nano, vol. 7, no. 11, pp. 10075-10082, 2013.
[22]M. Manutchehr-Danai, Dictionary of gems and gemology. Springer Science & Business Media, 2013.
[23]K.-K. Liu et al., Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy, Nanotechnology, vol. 21, no. 31, p. 315106, 2010.
[24]Y. Zhang et al., One‐Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy, Advanced Materials, vol. 28, no. 14, pp. 2699-2708, 2016.
[25]S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, Journal of the American Chemical Society, vol. 127, no. 50, pp. 17604-17605, 2005.
[26]Y. Sonnefraud et al., Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy, Optics letters, vol. 33, no. 6, pp. 611-613, 2008.
[27]S. Welz, Y. Gogotsi, and M. J. McNallan, Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides, Journal of applied physics, vol. 93, no. 7, pp. 4207-4214, 2003.
[28]T. Daulton, M. Kirk, R. Lewis, and L. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 175, pp. 12-20, 2001.
[29]F. Banhart and P. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation, Nature, vol. 382, no. 6590, p. 433, 1996.
[30]O. Guillois, G. Ledoux, and C. Reynaud, Diamond infrared emission bands in circumstellar media, The astrophysical journal letters, vol. 521, no. 2, p. L133, 1999.
[31]M. Goto et al., Spatially resolved 3 μm spectroscopy of Elias 1: Origin of diamonds in protoplanetary disks, The Astrophysical Journal, vol. 693, no. 1, p. 610, 2009.
[32]T. L. Daulton, Extraterrestrial nanodiamonds in the cosmos, in Ultrananocrystalline diamond: Elsevier, 2006, pp. 23-78.
[33]H. Schwertfeger, A. A. Fokin, and P. R. Schreiner, Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane, Angewandte Chemie International Edition, vol. 47, no. 6, pp. 1022-1036, 2008.
[34]J. Dahl, S. Liu, and R. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science, vol. 299, no. 5603, pp. 96-99, 2003.
[35]G. A. Mansoori, Diamondoid molecules, Advances in Chemical Physics, vol. 136, pp. 207-258, 2007.
[36]S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, Growth of diamond particles from methane-hydrogen gas, Journal of materials Science, vol. 17, no. 11, pp. 3106-3112, 1982.
[37]M. Schwander and K. Partes, A review of diamond synthesis by CVD processes, Diamond and related materials, vol. 20, no. 9, pp. 1287-1301, 2011.
[38]P. W. May, Diamond thin films: a 21st-century material, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1766, pp. 473-495, 2000.
[39]R. Balmer et al., Chemical vapour deposition synthetic diamond: materials, technology and applications, Journal of Physics: Condensed Matter, vol. 21, no. 36, p. 364221, 2009.
[40]S. Nad, Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition. Michigan State University, 2016.
[41]V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, The properties and applications of nanodiamonds, Nature nanotechnology, vol. 7, no. 1, p. 11, 2012.
[42]J. Viecelli, S. Bastea, J. Glosli, and F. Ree, Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives, The Journal of Chemical Physics, vol. 115, no. 6, pp. 2730-2736, 2001.
[43]D. M. Gruen, O. A. Shenderova, and A. Y. Vul, Synthesis, Properties and Applications of Ultrananocrystalline Diamond: Proceedings of the NATO ARW on Synthesis, Properties and Applications of Ultrananocrystalline Diamond, St. Petersburg, Russia, from 7 to 10 June 2004. Springer Science & Business Media, 2006.
[44]O. A. Shenderova and D. M. Gruen, Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew, 2012.
[45]V. Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russian Chemical Reviews, vol. 76, no. 4, p. 339, 2007.
[46]A. Chiganov, Selective inhibition of the oxidation of nanodiamonds for their cleaning, Physics of the Solid State, vol. 46, no. 4, pp. 620-621, 2004.
[47]S. Osswald, Nanodiamond Purification, in Nanodiamond: Royal Society of Chemistry, 2014, pp. 89-111.
[48]V. Pichot et al., An efficient purification method for detonation nanodiamonds, Diamond and Related Materials, vol. 17, no. 1, pp. 13-22, 2008.
[49]S. P. Hong, S. W. Ha, and S. W. Lee, Atmospheric-pressure chemical purification of detonation-synthesized nanodiamond by using perchloric acid: Intensive parametric study to control sp3/sp2carbon ratio, Diamond and Related Materials, vol. 81, pp. 27-32, 2018.
[50]S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air, Journal of the American Chemical Society, vol. 128, no. 35, pp. 11635-11642, 2006.
[51]O. Shenderova et al., Surface chemistry and properties of ozone-purified detonation nanodiamonds, The Journal of Physical Chemistry C, vol. 115, no. 20, pp. 9827-9837, 2011.
[52]S. P. Hong, T. H. Kim, and S. W. Lee, Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern, Carbon, vol. 116, pp. 640-647, 2017.
[53]D. P. Mitev, A. T. Townsend, B. Paull, and P. N. Nesterenko, Microwave-assisted purification of detonation nanodiamond, Diamond and Related Materials, vol. 48, pp. 37-46, 2014.
[54]C. Bradac and S. Osswald, Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics, Carbon, vol. 132, pp. 616-622, 2018.
[55]M. Trofimovich, A. Galiguzov, N. Tikhonov, A. Malakho, and A. Rogozin, Nanodiamond and Nano-Onion-Like Carbon Oxidation Kinetics, Refractories and Industrial Ceramics, vol. 56, no. 5, pp. 561-565, 2016.
[56]R. Brukh and S. Mitra, Kinetics of carbon nanotube oxidation, Journal of Materials Chemistry, vol. 17, no. 7, pp. 619-623, 2007.
[57]M. Z. Burkeev, A. Z. Sarsenbekova, E. Tazhbaev, and I. Figurinene, Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid, Russian Journal of Physical Chemistry A, vol. 89, no. 12, pp. 2183-2189, 2015.
[58]P. Gao, H. Wang, and Z. Jin, Study of oxidation properties and decomposition kinetics of three-dimensional (3-D) braided carbon fiber, Thermochimica acta, vol. 414, no. 1, pp. 59-63, 2004.
[59]S. Osswald, M. Havel, V. Mochalin, G. Yushin, and Y. Gogotsi, Increase of nanodiamond crystal size by selective oxidation, Diamond and Related Materials, vol. 17, no. 7-10, pp. 1122-1126, 2008.
[60]B. J. Etzold, I. Neitzel, M. Kett, F. Strobl, V. N. Mochalin, and Y. Gogotsi, Layer-by-layer oxidation for decreasing the size of detonation nanodiamond, Chemistry of Materials, vol. 26, no. 11, pp. 3479-3484, 2014.
[61]E. Ōsawa, Recent progress and perspectives in single-digit nanodiamond, Diamond and Related Materials, vol. 16, no. 12, pp. 2018-2022, 2007.
[62]A. Krüger et al., Unusually tight aggregation in detonation nanodiamond: identification and disintegration, Carbon, vol. 43, no. 8, pp. 1722-1730, 2005.
[63]Q. Xu and X. Zhao, Electrostatic interactions versus van der Waals interactions in the self-assembly of dispersed nanodiamonds, Journal of Materials Chemistry, vol. 22, no. 32, pp. 16416-16421, 2012.
[64]A. S. Barnard, Self-assembly in nanodiamond agglutinates, Journal of Materials Chemistry, vol. 18, no. 34, pp. 4038-4041, 2008.
[65]L. Lai and A. S. Barnard, Interparticle interactions and self-assembly of functionalized nanodiamonds, The journal of physical chemistry letters, vol. 3, no. 7, pp. 896-901, 2012.
[66]A. S. Barnard and M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals, Journal of Materials Chemistry, vol. 17, no. 45, pp. 4811-4819, 2007.
[67]L.-Y. Chang, E. Ōsawa, and A. S. Barnard, Confirmation of the electrostatic self-assembly of nanodiamonds, Nanoscale, vol. 3, no. 3, pp. 958-962, 2011.
[68]S. Somiya, Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press, 2013.
[69]A. Pentecost, S. Gour, V. Mochalin, I. Knoke, and Y. Gogotsi, Deaggregation of nanodiamond powders using salt-and sugar-assisted milling, ACS applied materials & interfaces, vol. 2, no. 11, pp. 3289-3294, 2010.
[70]S. Osswald, V. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond, Physical Review B, vol. 80, no. 7, p. 075419, 2009.
[71]V. I. Korepanov, E. Osawa, I. K. Lednev, and H.-o. Hamaguchi, Reply to the comment by Osipov et al. to “Carbon structure in nanodiamonds elucidated from Raman Spectroscopy, Carbon, vol. 135, pp. 236-237, 2018.
[72]V. I. Korepanov et al., Carbon structure in nanodiamonds elucidated from Raman spectroscopy, Carbon, vol. 121, pp. 322-329, 2017.
[73]V. Merkulov, J. Lannin, C. Munro, S. Asher, V. Veerasamy, and W. Milne, UV studies of tetrahedral bonding in diamondlike amorphous carbon, Physical review letters, vol. 78, no. 25, p. 4869, 1997.
[74]S. Prawer, K. Nugent, D. Jamieson, J. Orwa, L. A. Bursill, and J. Peng, The Raman spectrum of nanocrystalline diamond, Chemical Physics Letters, vol. 332, no. 1-2, pp. 93-97, 2000.
[75]O. O. Mykhaylyk, Y. M. Solonin, D. N. Batchelder, and R. Brydson, Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, X-ray diffraction, small-angle X-ray scattering, and ultraviolet Raman spectroscopy, Journal of applied Physics, vol. 97, no. 7, p. 074302, 2005.
[76]J. Orwa, K. Nugent, D. Jamieson, and S. Prawer, Raman investigation of damage caused by deep ion implantation in diamond, Physical Review B, vol. 62, no. 9, p. 5461, 2000.
[77]J. Cebik et al., Raman spectroscopy study of the nanodiamond-to-carbon onion transformation, Nanotechnology, vol. 24, no. 20, p. 205703, 2013.
[78]P. Németh, L. A. Garvie, and P. R. Buseck, Twinning of cubic diamond explains reported nanodiamond polymorphs, Scientific reports, vol. 5, p. 18381, 2015.
[79]M. Shellaiah, T. H. Chen, T. Simon, L.-C. Li, K. W. Sun, and F.-H. Ko, An affordable wet chemical route to grow conducting hybrid graphite-diamond nanowires: demonstration by a single nanowire device, Scientific reports, vol. 7, no. 1, p. 11243, 2017.
[80]A. S. Barnard and E. Ōsawa, The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond, Nanoscale, vol. 6, no. 2, pp. 1188-1194, 2014.
[81]E. Ōsawa, Remarks on the Particle-Size Determination of NanoAmando by Dynamic Light Scattering, NCRI Technical Bulletin, 2007.
[82]E. Ōsawa, Re-dispersion of NanoAmando® Hard Gel, NCRI Technical Bulletin, 2009.
[83]N. Mchedlov-Petrossyan, N. Kamneva, A. Marynin, A. Kryshtal, and E. Ōsawa, Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media, Physical Chemistry Chemical Physics, vol. 17, no. 24, pp. 16186-16203, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top