|
[1]E. Ōsawa, Monodisperse single nanodiamond particulates, Pure and Applied Chemistry, vol. 80, no. 7, pp. 1365-1379, 2008. [2]V. V. Danilenko, On the history of the discovery of nanodiamond synthesis, ed: Springer, 2004. [3]A. Krueger, Beyond the shine: recent progress in applications of nanodiamond, Journal of materials chemistry, vol. 21, no. 34, pp. 12571-12578, 2011. [4]V. Vaijayanthimala and H. Chang, Functionalized fluorescent nanodiamonds for biomedical applications, Future Medicine, 2009. [5]A. Krueger, Diamond nanoparticles: jewels for chemistry and physics, Advanced Materials, vol. 20, no. 12, pp. 2445-2449, 2008. [6]K. B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1861, pp. 2845-2861, 2007. [7]M. Ivanov, S. Pavlyshko, D. Ivanov, I. Petrov, and O. Shenderova, Synergistic compositions of colloidal nanodiamond as lubricant-additive, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 28, no. 4, pp. 869-877, 2010. [8]A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications, Critical reviews in solid state and materials sciences, vol. 34, no. 1-2, pp. 18-74, 2009. [9]K. D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, and Y. Gogotsi, Nanodiamond-polymer composite fibers and coatings, ACS nano, vol. 3, no. 2, pp. 363-369, 2009. [10]Q. Zhang et al., Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, vol. 32, no. 1, pp. 87-94, 2011. [11]V. N. Mochalin et al., Adsorption of drugs on nanodiamond: toward development of a drug delivery platform, Molecular pharmaceutics, vol. 10, no. 10, pp. 3728-3735, 2013. [12]D. Saada, Diamond and Graphite Properties, Israel institute of technology department of physic, 2000. [13]https://www.chemicool.com/elements/carbon.html. [14]S.-T. Lee, Z. Lin, and X. Jiang, CVD diamond films: nucleation and growth, Materials Science and Engineering: R: Reports, vol. 25, no. 4, pp. 123-154, 1999. [15]J. C. Angus, Diamond and diamond-like films, Thin Solid Films, vol. 216, no. 1, pp. 126-133, 1992. [16]K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology. John Wiley & Sons, 1994. [17]Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, Diamond semiconductor technology for RF device applications, Solid-state electronics, vol. 49, no. 7, pp. 1055-1070, 2005. [18]K. Kobashi, Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier, 2010. [19]R. F. Davis, Diamond films and coatings, Noyes Publications(USA), 1993, p. 435, 1993. [20]T. A. Grotjohn and J. Asmussen, Microwave plasma-assisted diamond film deposition, Diamond films handbook, pp. 243-260, 2002. [21]M. Liu, V. I. Artyukhov, H. Lee, F. Xu, and B. I. Yakobson, Carbyne from first principles: chain of C atoms, a nanorod or a nanorope, ACS nano, vol. 7, no. 11, pp. 10075-10082, 2013. [22]M. Manutchehr-Danai, Dictionary of gems and gemology. Springer Science & Business Media, 2013. [23]K.-K. Liu et al., Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy, Nanotechnology, vol. 21, no. 31, p. 315106, 2010. [24]Y. Zhang et al., One‐Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy, Advanced Materials, vol. 28, no. 14, pp. 2699-2708, 2016. [25]S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, Journal of the American Chemical Society, vol. 127, no. 50, pp. 17604-17605, 2005. [26]Y. Sonnefraud et al., Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy, Optics letters, vol. 33, no. 6, pp. 611-613, 2008. [27]S. Welz, Y. Gogotsi, and M. J. McNallan, Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides, Journal of applied physics, vol. 93, no. 7, pp. 4207-4214, 2003. [28]T. Daulton, M. Kirk, R. Lewis, and L. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 175, pp. 12-20, 2001. [29]F. Banhart and P. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation, Nature, vol. 382, no. 6590, p. 433, 1996. [30]O. Guillois, G. Ledoux, and C. Reynaud, Diamond infrared emission bands in circumstellar media, The astrophysical journal letters, vol. 521, no. 2, p. L133, 1999. [31]M. Goto et al., Spatially resolved 3 μm spectroscopy of Elias 1: Origin of diamonds in protoplanetary disks, The Astrophysical Journal, vol. 693, no. 1, p. 610, 2009. [32]T. L. Daulton, Extraterrestrial nanodiamonds in the cosmos, in Ultrananocrystalline diamond: Elsevier, 2006, pp. 23-78. [33]H. Schwertfeger, A. A. Fokin, and P. R. Schreiner, Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane, Angewandte Chemie International Edition, vol. 47, no. 6, pp. 1022-1036, 2008. [34]J. Dahl, S. Liu, and R. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science, vol. 299, no. 5603, pp. 96-99, 2003. [35]G. A. Mansoori, Diamondoid molecules, Advances in Chemical Physics, vol. 136, pp. 207-258, 2007. [36]S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, Growth of diamond particles from methane-hydrogen gas, Journal of materials Science, vol. 17, no. 11, pp. 3106-3112, 1982. [37]M. Schwander and K. Partes, A review of diamond synthesis by CVD processes, Diamond and related materials, vol. 20, no. 9, pp. 1287-1301, 2011. [38]P. W. May, Diamond thin films: a 21st-century material, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1766, pp. 473-495, 2000. [39]R. Balmer et al., Chemical vapour deposition synthetic diamond: materials, technology and applications, Journal of Physics: Condensed Matter, vol. 21, no. 36, p. 364221, 2009. [40]S. Nad, Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition. Michigan State University, 2016. [41]V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, The properties and applications of nanodiamonds, Nature nanotechnology, vol. 7, no. 1, p. 11, 2012. [42]J. Viecelli, S. Bastea, J. Glosli, and F. Ree, Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives, The Journal of Chemical Physics, vol. 115, no. 6, pp. 2730-2736, 2001. [43]D. M. Gruen, O. A. Shenderova, and A. Y. Vul, Synthesis, Properties and Applications of Ultrananocrystalline Diamond: Proceedings of the NATO ARW on Synthesis, Properties and Applications of Ultrananocrystalline Diamond, St. Petersburg, Russia, from 7 to 10 June 2004. Springer Science & Business Media, 2006. [44]O. A. Shenderova and D. M. Gruen, Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew, 2012. [45]V. Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russian Chemical Reviews, vol. 76, no. 4, p. 339, 2007. [46]A. Chiganov, Selective inhibition of the oxidation of nanodiamonds for their cleaning, Physics of the Solid State, vol. 46, no. 4, pp. 620-621, 2004. [47]S. Osswald, Nanodiamond Purification, in Nanodiamond: Royal Society of Chemistry, 2014, pp. 89-111. [48]V. Pichot et al., An efficient purification method for detonation nanodiamonds, Diamond and Related Materials, vol. 17, no. 1, pp. 13-22, 2008. [49]S. P. Hong, S. W. Ha, and S. W. Lee, Atmospheric-pressure chemical purification of detonation-synthesized nanodiamond by using perchloric acid: Intensive parametric study to control sp3/sp2carbon ratio, Diamond and Related Materials, vol. 81, pp. 27-32, 2018. [50]S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air, Journal of the American Chemical Society, vol. 128, no. 35, pp. 11635-11642, 2006. [51]O. Shenderova et al., Surface chemistry and properties of ozone-purified detonation nanodiamonds, The Journal of Physical Chemistry C, vol. 115, no. 20, pp. 9827-9837, 2011. [52]S. P. Hong, T. H. Kim, and S. W. Lee, Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern, Carbon, vol. 116, pp. 640-647, 2017. [53]D. P. Mitev, A. T. Townsend, B. Paull, and P. N. Nesterenko, Microwave-assisted purification of detonation nanodiamond, Diamond and Related Materials, vol. 48, pp. 37-46, 2014. [54]C. Bradac and S. Osswald, Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics, Carbon, vol. 132, pp. 616-622, 2018. [55]M. Trofimovich, A. Galiguzov, N. Tikhonov, A. Malakho, and A. Rogozin, Nanodiamond and Nano-Onion-Like Carbon Oxidation Kinetics, Refractories and Industrial Ceramics, vol. 56, no. 5, pp. 561-565, 2016. [56]R. Brukh and S. Mitra, Kinetics of carbon nanotube oxidation, Journal of Materials Chemistry, vol. 17, no. 7, pp. 619-623, 2007. [57]M. Z. Burkeev, A. Z. Sarsenbekova, E. Tazhbaev, and I. Figurinene, Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid, Russian Journal of Physical Chemistry A, vol. 89, no. 12, pp. 2183-2189, 2015. [58]P. Gao, H. Wang, and Z. Jin, Study of oxidation properties and decomposition kinetics of three-dimensional (3-D) braided carbon fiber, Thermochimica acta, vol. 414, no. 1, pp. 59-63, 2004. [59]S. Osswald, M. Havel, V. Mochalin, G. Yushin, and Y. Gogotsi, Increase of nanodiamond crystal size by selective oxidation, Diamond and Related Materials, vol. 17, no. 7-10, pp. 1122-1126, 2008. [60]B. J. Etzold, I. Neitzel, M. Kett, F. Strobl, V. N. Mochalin, and Y. Gogotsi, Layer-by-layer oxidation for decreasing the size of detonation nanodiamond, Chemistry of Materials, vol. 26, no. 11, pp. 3479-3484, 2014. [61]E. Ōsawa, Recent progress and perspectives in single-digit nanodiamond, Diamond and Related Materials, vol. 16, no. 12, pp. 2018-2022, 2007. [62]A. Krüger et al., Unusually tight aggregation in detonation nanodiamond: identification and disintegration, Carbon, vol. 43, no. 8, pp. 1722-1730, 2005. [63]Q. Xu and X. Zhao, Electrostatic interactions versus van der Waals interactions in the self-assembly of dispersed nanodiamonds, Journal of Materials Chemistry, vol. 22, no. 32, pp. 16416-16421, 2012. [64]A. S. Barnard, Self-assembly in nanodiamond agglutinates, Journal of Materials Chemistry, vol. 18, no. 34, pp. 4038-4041, 2008. [65]L. Lai and A. S. Barnard, Interparticle interactions and self-assembly of functionalized nanodiamonds, The journal of physical chemistry letters, vol. 3, no. 7, pp. 896-901, 2012. [66]A. S. Barnard and M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals, Journal of Materials Chemistry, vol. 17, no. 45, pp. 4811-4819, 2007. [67]L.-Y. Chang, E. Ōsawa, and A. S. Barnard, Confirmation of the electrostatic self-assembly of nanodiamonds, Nanoscale, vol. 3, no. 3, pp. 958-962, 2011. [68]S. Somiya, Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press, 2013. [69]A. Pentecost, S. Gour, V. Mochalin, I. Knoke, and Y. Gogotsi, Deaggregation of nanodiamond powders using salt-and sugar-assisted milling, ACS applied materials & interfaces, vol. 2, no. 11, pp. 3289-3294, 2010. [70]S. Osswald, V. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond, Physical Review B, vol. 80, no. 7, p. 075419, 2009. [71]V. I. Korepanov, E. Osawa, I. K. Lednev, and H.-o. Hamaguchi, Reply to the comment by Osipov et al. to “Carbon structure in nanodiamonds elucidated from Raman Spectroscopy, Carbon, vol. 135, pp. 236-237, 2018. [72]V. I. Korepanov et al., Carbon structure in nanodiamonds elucidated from Raman spectroscopy, Carbon, vol. 121, pp. 322-329, 2017. [73]V. Merkulov, J. Lannin, C. Munro, S. Asher, V. Veerasamy, and W. Milne, UV studies of tetrahedral bonding in diamondlike amorphous carbon, Physical review letters, vol. 78, no. 25, p. 4869, 1997. [74]S. Prawer, K. Nugent, D. Jamieson, J. Orwa, L. A. Bursill, and J. Peng, The Raman spectrum of nanocrystalline diamond, Chemical Physics Letters, vol. 332, no. 1-2, pp. 93-97, 2000. [75]O. O. Mykhaylyk, Y. M. Solonin, D. N. Batchelder, and R. Brydson, Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, X-ray diffraction, small-angle X-ray scattering, and ultraviolet Raman spectroscopy, Journal of applied Physics, vol. 97, no. 7, p. 074302, 2005. [76]J. Orwa, K. Nugent, D. Jamieson, and S. Prawer, Raman investigation of damage caused by deep ion implantation in diamond, Physical Review B, vol. 62, no. 9, p. 5461, 2000. [77]J. Cebik et al., Raman spectroscopy study of the nanodiamond-to-carbon onion transformation, Nanotechnology, vol. 24, no. 20, p. 205703, 2013. [78]P. Németh, L. A. Garvie, and P. R. Buseck, Twinning of cubic diamond explains reported nanodiamond polymorphs, Scientific reports, vol. 5, p. 18381, 2015. [79]M. Shellaiah, T. H. Chen, T. Simon, L.-C. Li, K. W. Sun, and F.-H. Ko, An affordable wet chemical route to grow conducting hybrid graphite-diamond nanowires: demonstration by a single nanowire device, Scientific reports, vol. 7, no. 1, p. 11243, 2017. [80]A. S. Barnard and E. Ōsawa, The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond, Nanoscale, vol. 6, no. 2, pp. 1188-1194, 2014. [81]E. Ōsawa, Remarks on the Particle-Size Determination of NanoAmando by Dynamic Light Scattering, NCRI Technical Bulletin, 2007. [82]E. Ōsawa, Re-dispersion of NanoAmando® Hard Gel, NCRI Technical Bulletin, 2009. [83]N. Mchedlov-Petrossyan, N. Kamneva, A. Marynin, A. Kryshtal, and E. Ōsawa, Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media, Physical Chemistry Chemical Physics, vol. 17, no. 24, pp. 16186-16203, 2015.
|