|
參考文獻
[1]V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, (in English), Energy & Environmental Science, Review vol. 4, no. 9, pp. 3243-3262, Sep 2011. [2]A. R. Dehghani-Sanij, E. Tharumalingam, M. B. Dusseault, and R. Fraser, Study of energy storage systems and environmental challenges of batteries, (in English), Renew. Sust. Energ. Rev., Review vol. 104, pp. 192-208, Apr 2019. [3]F. Y. Cheng, J. Liang, Z. L. Tao, and J. Chen, Functional Materials for Rechargeable Batteries, (in English), Adv. Mater., Review vol. 23, no. 15, pp. 1695-1715, Apr 2011. [4]Y. Y. Liu, G. M. Zhou, K. Liu, and Y. Cui, Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity Published as part of the Accounts of Chemical Research special issue Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales, Accounts of Chemical Research, vol. 50, no. 12, pp. 2895-2905, Dec 2017. [5]Y. Jin, B. Zhu, Z. D. Lu, N. Liu, and J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, vol. 7, no. 23, Dec 2017, Art no. 1700715. [6]H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, vol. 7, no. 5, pp. 414-429, Oct 2012. [7]M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, vol. 5, no. 7, pp. 7854-7863, Jul 2012. [8]Z. H. Liu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries, Chemical Society Reviews, vol. 48, no. 1, pp. 285-309, Jan 2019. [9]A. Hirata et al., Atomic-scale disproportionation in amorphous silicon monoxide, (in English), Nat. Commun., Article vol. 7, p. 7, May 2016, Art no. 11591. [10]H. J. Kim et al., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells, Nano Letters, vol. 16, no. 1, pp. 282-288, Jan 2016. [11]C. H. Gao et al., Superior Cycling Performance of SiOx/C Composite with Arrayed Mesoporous Architecture as Anode Material for Lithium-Ion Batteries, Journal of the Electrochemical Society, vol. 161, no. 14, pp. A2216-A2221, 2014. [12]X. M. Ma, Z. P. Wei, H. J. Han, X. B. Wang, K. Q. Cui, and L. Yang, Tunable construction of multi-shell hollow SiO2 microspheres with hierarchically porous structure as high-performance anodes for lithium ion batteries, Chemical Engineering Journal, vol. 323, pp. 252-259, Sep 2017. [13]C. Liang et al., Submicron silica as high-capacity lithium storage material with superior cycling performance, Materials Research Bulletin, vol. 96, pp. 347-353, Dec 2017. [14]J. G. Tu et al., Straightforward Approach toward SiO2 Nanospheres and Their Superior Lithium Storage Performance, Journal of Physical Chemistry C, vol. 118, no. 14, pp. 7357-7362, Apr 2014. [15]W. S. Chang, C. M. Park, J. H. Kim, Y. U. Kim, G. Jeong, and H. J. Sohn, Quartz (SiO2): a new energy storage anode material for Li-ion batteries, (in English), Energy & Environmental Science, Article vol. 5, no. 5, pp. 6895-6899, May 2012. [16]H. Takezawa, K. Iwamoto, S. Ito, and H. Yoshizawa, Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries, (in English), Journal of Power Sources, Article vol. 244, pp. 149-157, Dec 2013. [17]J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, and O. Yamamoto, SiOx-based anodes for secondary lithium batteries, Solid State Ionics, vol. 152, pp. 125-129, Dec 2002, Art no. Pii s0167-2738(02)00362-4. [18]T. S. D. Kumari, D. Jeyakumara, and T. P. Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon, Rsc Advances, vol. 3, no. 35, pp. 15028-15034, 2013. [19]X. Qin et al., Raman scattering study on phonon anisotropic properties of SiC, Journal of Alloys and Compounds, vol. 776, pp. 1048-1055, Mar 2019. [20]D. T. Ngo, H. T. T. Le, X. M. Pham, C. N. Park, and C. J. Park, Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries, Acs Applied Materials & Interfaces, vol. 9, no. 38, pp. 32790-32800, Sep 2017. [21]H. Xie et al., Necklace-Like Silicon Carbide and Carbon Nanocomposites Formed by Steady Joule Heating, Small Methods, vol. 2, no. 4, Apr 2018, Art no. Unsp 1700371. [22]X. J. Sun, C. Z. Shao, F. Zhang, Y. Li, Q. H. Wu, and Y. G. Yang, SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials, Frontiers in Chemistry, vol. 6, May 2018, Art no. 166. [23]C. H. Shao, F. Zhang, H. Y. Sun, B. Z. Li, Y. Li, and Y. G. Yang, SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries (vol 205, pg 245, 2017), Materials Letters, vol. 209, pp. 255-255, Dec 2017. [24]K. Abdelouahdi et al., Influence of CH4 partial pressure on the microstructure of sputter-deposited tungsten carbide thin films, Journal of Physics-Condensed Matter, vol. 18, no. 6, pp. 1913-1925, Feb 2006. [25]X. D. Huang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode, Rsc Advances, vol. 8, no. 10, pp. 5189-5196, 2018. [26]Y. Gogotsi, How safe are nanotubes and other nanofilaments?, Materials Research Innovations, vol. 7, no. 4, pp. 192-194, 2003/08/01 2003. [27]Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, vol. 35, no. 3, pp. 357-401, Mar 2010. [28]X. L. Xie, Y. W. Mai, and X. P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science & Engineering R-Reports, vol. 49, no. 4, pp. 89-112, May 2005. [29]Y. Saito and S. Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, vol. 38, no. 2, pp. 169-182, 2000. [30]W. Wang et al., Silicon Decorated Cone Shaped Carbon Nanotube Clusters for Lithium Ion Battery Anodes, Small, vol. 10, no. 16, pp. 3389-3396, Aug 2014. [31]G. Grinbom, M. Muallem, A. Itzhak, D. Zitoun, and G. D. Nessim, Synthesis of Carbon Nanotubes Networks Grown on Silicon Nanoparticles as Li-Ion Anodes, Journal of Physical Chemistry C, vol. 121, no. 46, pp. 25632-25640, Nov 2017. [32]Y. Fan, Q. Zhang, Q. Z. Xiao, X. H. Wang, and K. Huang, High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology, Carbon, vol. 59, pp. 264-269, Aug 2013. [33]J. Palomino, D. Varshney, B. R. Weiner, and G. Morell, Study of the Structural Changes Undergone by Hybrid Nanostructured Si-CNTs Employed as an Anode Material in a Rechargeable Lithium-Ion Battery, Journal of Physical Chemistry C, vol. 119, no. 36, pp. 21125-21134, Sep 2015. [34]R. A. Dileo et al., Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes, Nano Energy, vol. 2, no. 2, pp. 268-275, Mar 2013. [35]C. H. Hsiao and J. H. Lin, Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts, Carbon, vol. 124, pp. 637-641, Nov 2017. [36]A. Kapoor, N. Singh, A. B. Dey, A. K. Nigam, and A. Bajpai, 3d transition metals and oxides within carbon nanotubes by copyrolysis of metallocene & camphor: High filling efficiency and self-organized structures, Carbon, vol. 132, pp. 733-745, Jun 2018. [37]Y. Y. Zhang et al., Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries, (in English), J. Mater. Sci., Article vol. 52, no. 7, pp. 3630-3641, Apr 2017. [38]J. H. Lee et al., High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li Ni0.85Co0.05Mn0.10 O-2 cathode, (in English), Energy & Environmental Science, Article vol. 9, no. 6, pp. 2152-2158, 2016. [39]J. M. Su et al., Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries, Acs Applied Materials & Interfaces, vol. 9, no. 21, pp. 17807-17813, May 2017. [40]L. B. Zhu, Y. H. Xiu, D. W. Hess, and C. P. Wong, Aligned carbon nanotube stacks by water-assisted selective etching, Nano Letters, vol. 5, no. 12, pp. 2641-2645, Dec 2005. [41]K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, vol. 306, no. 5700, pp. 1362-1364, Nov 2004. [42]W. W. Zhou, S. T. Zhan, L. Ding, and J. Liu, General Rules for Selective Growth of Enriched Semiconducting Single Walled Carbon Nanotubes with Water Vapor as in Situ Etchant, Journal of the American Chemical Society, vol. 134, no. 34, pp. 14019-14026, Aug 2012. [43]K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science, vol. 306, no. 5696, pp. 666-669, Oct 2004. [44]I. H. Son et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nat. Commun., vol. 6, Jun 2015, Art no. 7393. [45]B. B. Li, Y. Z. Jiang, F. Jiang, D. X. Cao, H. K. Wang, and C. M. Niu, Bird's nest-like nanographene shell encapsulated Si nanoparticles Their structural and Li anode properties, Journal of Power Sources, vol. 341, pp. 46-52, Feb 2017. [46]Q. Xu et al., SiOx Encapsulated in Graphene Bubble Film: An Ultrastable Li-Ion Battery Anode, Adv. Mater., vol. 30, no. 25, Jun 2018, Art no. 1707430. [47]J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, vol. 22, no. 3, pp. 587-603, Feb 2010. [48]S. Menne, T. Vogl, and A. Balducci, The synthesis and electrochemical characterization of bis(fluorosulfonyl) imide-based protic ionic liquids, Chemical Communications, vol. 51, no. 17, pp. 3656-3659, 2015. [49]M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports-Review Section of Physics Letters, vol. 409, no. 2, pp. 47-99, Mar 2005. [50]A. C. Ferrari et al., Raman spectrum of graphene and graphene layers, Physical Review Letters, vol. 97, no. 18, Nov 2006, Art no. 187401.
|