跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊子霆
研究生(外文):Tzu-TingChuang
論文名稱:導電奈米碳及碳化矽包覆矽與矽氧材料的合成及其作為鋰離子電池負極之應用
論文名稱(外文):Synthesis of Conductive Nano Carbon and Silicon Carbide Coated Silicon and Silicon Oxide and Their Applications to Anode of Lithium Ion Battery
指導教授:曾永華曾永華引用關係
指導教授(外文):Yonhua Tzeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:鋰離子電池碳化矽奈米碳管奈米碳纖維水氣輔助
外文關鍵詞:Lithium Ion BatterySilicon CarbideCarbon NanotubeNano Carbon FiberWater-Assisted
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前電池廣泛運用於穿戴式設備、電動車、筆記型電腦等等的電子設備,而鋰離子電池是有可能滿足上述這些設備需求的電池,此碩論主要探討的便是鋰離子電池的負極,達到最佳化鋰離子電池電性。目前市面上最常使用的鋰離子負極為石墨,因為石墨長時間充放電後不會有枝晶鋰產生,使其在應用上具有安全性與充放電週期長的優勢,但石墨陽極的理論電容值只有372mAh/g的電容量,故許多研究專注於尋找替代的材料,矽便是其中一個可能的物質,但矽有高的體積膨脹率,約為400%致使電極容易呈現不穩定而導致電容量下降。因此,本碩論主要是利用非化學計量氧化矽(SiOx),取代原本的純矽材料,並探討單純材料的電特性、製成碳矽氧複合物的電特性、量產的可行性
本實驗先比較矽片(100nm)和非化學計量氧化矽在組成電池後的電性,可以發現在電容量與庫倫效率的穩定性方面是勝過矽片的,但缺點是首圈庫倫效率較低。之後將SiOx外面成長不同碳重量的奈米碳管/奈米碳纖維,以及在外面形成碳化矽,提供SiOx保護,探討電特性是否改善。在奈米碳的部分,討論其量產的可能性,將石英舟改成內石英管後,奈米碳管/奈米纖維依然能夠成長,碳成長的重量約為原本的四倍,原料利用率為原本的兩倍,在內石英管中增加兩組環,能夠讓得到的樣品更為均一,但犧牲的是原料利用率,另外發現使用水汽輔助的方式成長奈米碳/奈米纖維,從拉曼分析中發現成長的品質較好缺陷較少,利用此方式成長不同碳重量比例的奈米碳管,可以發現到碳重量比例10%的樣品有突出的電特性,在50圈能維持在1400mAh/g左右,首圈庫倫效率為62%也較佳。在碳化矽方面,成長微量的碳化矽能夠讓平均電容量大為提高,首圈的庫倫效率有稍微提高。
The development of lithium-ion batteries is very important today. Our experiment focuses on how to improve the anode of lithium-ion batteries. First, we found that using SiOx in the anode is more stable than silicon, Second, we succeed using a quartz tube to produce lots of powder, and the powder is uniform. Last, we grow nanocarbon and silicon carbide on SiOx and succeed to improve the anode’s electrical performance.The ten percent carbon content SiOx@CNT/CNF and SiOx@SiC in the fifty torr pressure have the best performance in our experiment.
目錄
摘要 i
Abstract ii
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xiv
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
第2章 文獻回顧 5
2.1鋰電池的內部運作模式 5
2.2負極材料介紹 6
2.3矽之負極材料 6
2.4矽氧複合材料介紹與應用在鋰電池 7
2.4.1 一氧化矽(SiO)基陽極材料 7
2.4.2二氧化矽陽極 9
2.4.3非化學計量氧化矽(SiOX) 10
2.5矽碳複合材料介紹與應用在鋰電池 13
2.5.1碳化矽(silicon carbide, SiC) 13
2.6電解液 25
2.7拉曼光譜(Raman spectrum)原理介紹 27
第3章 實驗流程設計與使用設備介紹 29
3.1實驗流程簡介 29
3.2奈米碳複合材料包覆於非化學計量氧化矽(SiOx@CNT/CNF)粉末製備 30
3.2.1碳重量50%的SiOx@CNT/CNF粉末製備 32
3.2.2碳重量30%的SiOx@CNT/CNF粉末製備 33
3.2.3碳重量10%的SiOx@CNT/CNF粉末製備 34
3.3碳化矽複合非化學計量氧化矽(SiOx@SiC)粉末製備 35
3.4粉末量測的機台介紹 39
3.4.1拉曼光譜量測系統(Raman Spectrum System) 39
3.4.2掃描式電子顯微鏡(Scanning-Electron Microscopy,SEM) 40
3.4.3能量色散X-射線光譜(Energy Dispersive X-ray,EDS) 41
3.4.4高溫二維X-ray廣角繞射儀(XRD) 42
3.4.5高解析場發射掃描穿透式電子顯微鏡 43
3.5鋰離子電池組裝 44
3.5.1攪醬料前置處理 44
3.5.2攪醬料及極片製作流程 45
3.5.3半電池封裝 46
3.6鋰離子電池量測與分析-電化學測試機 47
第4章 實驗結果與討論 48
4.1矽氧碳複合材料 48
4.2矽與SiOx之比較 48
4.3奈米碳包覆非化學計量氧化矽(SiOx@CNT/CNF) 52
4.3.1水氣輔助(water-assisted)化學氣相沉積對奈米碳管的影響 52
4.3.2奈米碳量產的過程與結果 54
4.4不同碳重量奈米碳包覆SiOx之比較 56
4.4.1能量色散X-射線光譜(EDS) 56
4.4.2拉曼光譜分析 58
4.4.3掃描電子顯微鏡觀察分析 60
4.4.4穿透式電子顯微鏡(Transmission Electron Microscope, TEM)分析 62
4.4.5電性測量 63
4.5非化學計量氧化矽複合碳化矽(SiOx@SiC) 67
4.5.1能量色散X-射線光譜(EDS) 67
4.5.2 X-ray廣角繞射儀分析(XRD 分析) 68
4.5.4穿透式電子顯微鏡量測 70
4.5.5電池量測分析 70
第五章結論與未來展望 74
參考文獻 76
參考文獻

[1]V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, (in English), Energy & Environmental Science, Review vol. 4, no. 9, pp. 3243-3262, Sep 2011.
[2]A. R. Dehghani-Sanij, E. Tharumalingam, M. B. Dusseault, and R. Fraser, Study of energy storage systems and environmental challenges of batteries, (in English), Renew. Sust. Energ. Rev., Review vol. 104, pp. 192-208, Apr 2019.
[3]F. Y. Cheng, J. Liang, Z. L. Tao, and J. Chen, Functional Materials for Rechargeable Batteries, (in English), Adv. Mater., Review vol. 23, no. 15, pp. 1695-1715, Apr 2011.
[4]Y. Y. Liu, G. M. Zhou, K. Liu, and Y. Cui, Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity Published as part of the Accounts of Chemical Research special issue Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales, Accounts of Chemical Research, vol. 50, no. 12, pp. 2895-2905, Dec 2017.
[5]Y. Jin, B. Zhu, Z. D. Lu, N. Liu, and J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, vol. 7, no. 23, Dec 2017, Art no. 1700715.
[6]H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, vol. 7, no. 5, pp. 414-429, Oct 2012.
[7]M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, vol. 5, no. 7, pp. 7854-7863, Jul 2012.
[8]Z. H. Liu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries, Chemical Society Reviews, vol. 48, no. 1, pp. 285-309, Jan 2019.
[9]A. Hirata et al., Atomic-scale disproportionation in amorphous silicon monoxide, (in English), Nat. Commun., Article vol. 7, p. 7, May 2016, Art no. 11591.
[10]H. J. Kim et al., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells, Nano Letters, vol. 16, no. 1, pp. 282-288, Jan 2016.
[11]C. H. Gao et al., Superior Cycling Performance of SiOx/C Composite with Arrayed Mesoporous Architecture as Anode Material for Lithium-Ion Batteries, Journal of the Electrochemical Society, vol. 161, no. 14, pp. A2216-A2221, 2014.
[12]X. M. Ma, Z. P. Wei, H. J. Han, X. B. Wang, K. Q. Cui, and L. Yang, Tunable construction of multi-shell hollow SiO2 microspheres with hierarchically porous structure as high-performance anodes for lithium ion batteries, Chemical Engineering Journal, vol. 323, pp. 252-259, Sep 2017.
[13]C. Liang et al., Submicron silica as high-capacity lithium storage material with superior cycling performance, Materials Research Bulletin, vol. 96, pp. 347-353, Dec 2017.
[14]J. G. Tu et al., Straightforward Approach toward SiO2 Nanospheres and Their Superior Lithium Storage Performance, Journal of Physical Chemistry C, vol. 118, no. 14, pp. 7357-7362, Apr 2014.
[15]W. S. Chang, C. M. Park, J. H. Kim, Y. U. Kim, G. Jeong, and H. J. Sohn, Quartz (SiO2): a new energy storage anode material for Li-ion batteries, (in English), Energy & Environmental Science, Article vol. 5, no. 5, pp. 6895-6899, May 2012.
[16]H. Takezawa, K. Iwamoto, S. Ito, and H. Yoshizawa, Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries, (in English), Journal of Power Sources, Article vol. 244, pp. 149-157, Dec 2013.
[17]J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, and O. Yamamoto, SiOx-based anodes for secondary lithium batteries, Solid State Ionics, vol. 152, pp. 125-129, Dec 2002, Art no. Pii s0167-2738(02)00362-4.
[18]T. S. D. Kumari, D. Jeyakumara, and T. P. Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon, Rsc Advances, vol. 3, no. 35, pp. 15028-15034, 2013.
[19]X. Qin et al., Raman scattering study on phonon anisotropic properties of SiC, Journal of Alloys and Compounds, vol. 776, pp. 1048-1055, Mar 2019.
[20]D. T. Ngo, H. T. T. Le, X. M. Pham, C. N. Park, and C. J. Park, Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries, Acs Applied Materials & Interfaces, vol. 9, no. 38, pp. 32790-32800, Sep 2017.
[21]H. Xie et al., Necklace-Like Silicon Carbide and Carbon Nanocomposites Formed by Steady Joule Heating, Small Methods, vol. 2, no. 4, Apr 2018, Art no. Unsp 1700371.
[22]X. J. Sun, C. Z. Shao, F. Zhang, Y. Li, Q. H. Wu, and Y. G. Yang, SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials, Frontiers in Chemistry, vol. 6, May 2018, Art no. 166.
[23]C. H. Shao, F. Zhang, H. Y. Sun, B. Z. Li, Y. Li, and Y. G. Yang, SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries (vol 205, pg 245, 2017), Materials Letters, vol. 209, pp. 255-255, Dec 2017.
[24]K. Abdelouahdi et al., Influence of CH4 partial pressure on the microstructure of sputter-deposited tungsten carbide thin films, Journal of Physics-Condensed Matter, vol. 18, no. 6, pp. 1913-1925, Feb 2006.
[25]X. D. Huang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode, Rsc Advances, vol. 8, no. 10, pp. 5189-5196, 2018.
[26]Y. Gogotsi, How safe are nanotubes and other nanofilaments?, Materials Research Innovations, vol. 7, no. 4, pp. 192-194, 2003/08/01 2003.
[27]Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, vol. 35, no. 3, pp. 357-401, Mar 2010.
[28]X. L. Xie, Y. W. Mai, and X. P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science & Engineering R-Reports, vol. 49, no. 4, pp. 89-112, May 2005.
[29]Y. Saito and S. Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, vol. 38, no. 2, pp. 169-182, 2000.
[30]W. Wang et al., Silicon Decorated Cone Shaped Carbon Nanotube Clusters for Lithium Ion Battery Anodes, Small, vol. 10, no. 16, pp. 3389-3396, Aug 2014.
[31]G. Grinbom, M. Muallem, A. Itzhak, D. Zitoun, and G. D. Nessim, Synthesis of Carbon Nanotubes Networks Grown on Silicon Nanoparticles as Li-Ion Anodes, Journal of Physical Chemistry C, vol. 121, no. 46, pp. 25632-25640, Nov 2017.
[32]Y. Fan, Q. Zhang, Q. Z. Xiao, X. H. Wang, and K. Huang, High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology, Carbon, vol. 59, pp. 264-269, Aug 2013.
[33]J. Palomino, D. Varshney, B. R. Weiner, and G. Morell, Study of the Structural Changes Undergone by Hybrid Nanostructured Si-CNTs Employed as an Anode Material in a Rechargeable Lithium-Ion Battery, Journal of Physical Chemistry C, vol. 119, no. 36, pp. 21125-21134, Sep 2015.
[34]R. A. Dileo et al., Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes, Nano Energy, vol. 2, no. 2, pp. 268-275, Mar 2013.
[35]C. H. Hsiao and J. H. Lin, Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts, Carbon, vol. 124, pp. 637-641, Nov 2017.
[36]A. Kapoor, N. Singh, A. B. Dey, A. K. Nigam, and A. Bajpai, 3d transition metals and oxides within carbon nanotubes by copyrolysis of metallocene & camphor: High filling efficiency and self-organized structures, Carbon, vol. 132, pp. 733-745, Jun 2018.
[37]Y. Y. Zhang et al., Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries, (in English), J. Mater. Sci., Article vol. 52, no. 7, pp. 3630-3641, Apr 2017.
[38]J. H. Lee et al., High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li Ni0.85Co0.05Mn0.10 O-2 cathode, (in English), Energy & Environmental Science, Article vol. 9, no. 6, pp. 2152-2158, 2016.
[39]J. M. Su et al., Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries, Acs Applied Materials & Interfaces, vol. 9, no. 21, pp. 17807-17813, May 2017.
[40]L. B. Zhu, Y. H. Xiu, D. W. Hess, and C. P. Wong, Aligned carbon nanotube stacks by water-assisted selective etching, Nano Letters, vol. 5, no. 12, pp. 2641-2645, Dec 2005.
[41]K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, vol. 306, no. 5700, pp. 1362-1364, Nov 2004.
[42]W. W. Zhou, S. T. Zhan, L. Ding, and J. Liu, General Rules for Selective Growth of Enriched Semiconducting Single Walled Carbon Nanotubes with Water Vapor as in Situ Etchant, Journal of the American Chemical Society, vol. 134, no. 34, pp. 14019-14026, Aug 2012.
[43]K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science, vol. 306, no. 5696, pp. 666-669, Oct 2004.
[44]I. H. Son et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nat. Commun., vol. 6, Jun 2015, Art no. 7393.
[45]B. B. Li, Y. Z. Jiang, F. Jiang, D. X. Cao, H. K. Wang, and C. M. Niu, Bird's nest-like nanographene shell encapsulated Si nanoparticles Their structural and Li anode properties, Journal of Power Sources, vol. 341, pp. 46-52, Feb 2017.
[46]Q. Xu et al., SiOx Encapsulated in Graphene Bubble Film: An Ultrastable Li-Ion Battery Anode, Adv. Mater., vol. 30, no. 25, Jun 2018, Art no. 1707430.
[47]J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, vol. 22, no. 3, pp. 587-603, Feb 2010.
[48]S. Menne, T. Vogl, and A. Balducci, The synthesis and electrochemical characterization of bis(fluorosulfonyl) imide-based protic ionic liquids, Chemical Communications, vol. 51, no. 17, pp. 3656-3659, 2015.
[49]M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports-Review Section of Physics Letters, vol. 409, no. 2, pp. 47-99, Mar 2005.
[50]A. C. Ferrari et al., Raman spectrum of graphene and graphene layers, Physical Review Letters, vol. 97, no. 18, Nov 2006, Art no. 187401.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊