|
[1] Koester, C. J., & Snitzer, E. (1964). Amplification in a fiber laser. Applied optics, 3(10), 1182-1186. [2] Snitzer, E., Po, H., Hakimi, F., Tumminelli, R., & McCollum, B. C. (1988, January). Double clad, offset core Nd fiber laser. In Optical fiber sensors (p. PD5). Optical Society of America. [3] Shi, W., Fang, Q., Zhu, X., Norwood, R. A., & Peyghambarian, N. (2014). Fiber lasers and their applications. Applied Optics, 53(28), 6554-6568. [4] Moulton, P. F., Rines, G. A., Slobodtchikov, E. V., Wall, K. F., Frith, G., Samson, B., & Carter, A. L. (2009). Tm-doped fiber lasers: fundamentals and power scaling. IEEE Journal of selected topics in quantum electronics, 15(1), 85-92. [5] Kim, J. W., Jelger, P., Sahu, J. K., Laurell, F., & Clarkson, W. A. (2008). High-power and wavelength-tunable operation of an Er, Yb fiber laser using a volume Bragg grating. Optics letters, 33(11), 1204-1206. [6] Wysocki, P. F., Digonnet, M. J. F., & Kim, B. Y. (1991). Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm. Optics letters, 16(12), 961-963. [7] Takahashi, N., Hirono, T., Akashi, H., Takahashi, S., & Sasaki, T. (1997). An output power stabilized erbium-doped fiber amplifier with automatic gain control. IEEE Journal of Selected Topics in Quantum Electronics, 3(4), 1019-1026. [8] Giles, C. R., & Desurvire, E. (1991). Modeling erbium-doped fiber amplifiers. Journal of lightwave technology, 9(2), 271-283. [9] Kotov, L., Likhachev, M., Bubnov, M., Medvedkov, O., Yashkov, M., Guryanov, A., ... & Cormier, E. (2013, May). Single-mode Yb-free Er-doped all-fiber laser cladding-pumped at 976 nm with record efficiency of 40% and output power of 75 W. In The European Conference on Lasers and Electro-Optics (p. CJ_8_2). Optical Society of America. [10] Chow, J., Town, G., Eggleton, B., Ibsen, M., Sugden, K., & Bennion, I. (1996). Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters. IEEE Photonics Technology Letters, 8(1), 60-62. [11] Pask, H. M., Carman, R. J., Hanna, D. C., Tropper, A. C., Mackechnie, C. J., Barber, P. R., & Dawes, J. M. (1995). Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2/spl mu/m region. IEEE Journal of Selected Topics in Quantum Electronics, 1(1), 2-13. [12] Magne, S., Druetta, M., Goure, J. P., Thevenin, J. C., Ferdinand, P., & Monnom, G. (1994). An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tunability in an external cavity. Journal of luminescence, 60, 647-650. [13] Wang, P., Dawes, J. M., Dekker, P., & Piper, J. A. (2000). Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser. Optics communications, 174(5-6), 467-470. [14] Wang, P., Cooper, L. J., Sahu, J. K., & Clarkson, W. A. (2006). Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser. Optics letters, 31(2), 226-228. [15] Paschotta, R., Hanna, D. C., De Natale, P., Modugno, G., Inguscio, M., & Laporta, P. (1997). Power amplifier for 1083 nm using ytterbium doped fibre. Optics communications, 136(3-4), 243-246. [16] Paschotta, R., Nilsson, J., Tropper, A. C., & Hanna, D. C. (1997). Ytterbium-doped fiber amplifiers. IEEE Journal of quantum electronics, 33(7), 1049-1056. [17] Paschotta, R., Nilsson, J., Tropper, A. C., & Hanna, D. C. (1997). Ytterbium-doped fiber amplifiers. IEEE Journal of quantum electronics, 33(7), 1049-1056. [18] Zhu, X., Zhu, G., Shi, W., Zong, J., Wiersma, K., Nguyen, D., ... & Peyghambarian, N. (2013). 976 nm Single-polarization single-frequency Ytterbium-doped phosphate fiber amplifiers. IEEE Photonics Technology Letters, 25(14), 1365-1368. [19] Jeong, Y. E., Sahu, J. K., Payne, D. N., & Nilsson, J. (2004). Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics express, 12(25), 6088-6092. [20] Boullet, J., Zaouter, Y., Desmarchelier, R., Cazaux, M., Salin, F., Saby, J., ... & Cormier, E. (2008). High power ytterbium-doped rod-type three-level photonic crystal fiber laser. Optics Express, 16(22), 17891-17902. [21] Roeser, F., Jauregui, C., Limpert, J., & Tünnermann, A. (2008). 94 W 980 nm high brightness Yb-doped fiber laser. Optics Express, 16(22), 17310-17318. [22] Oron, R., & Hardy, A. A. (1999). Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers. JOSA B, 16(5), 695-701. [23] Ylä-Jarkko, K. H., Selvas, R., Soh, D. B. S., Sahu, J. K., Codemard, C. A., Nilsson, J., ... & Grudinin, A. B. (2003, February). A 3.5 W 977 nm cladding-pumped jacketed air-clad ytterbium-doped fiber laser. In Advanced Solid-State Photonics(p. 103). Optical Society of America. [24] Pureur, V., Bigot, L., Bouwmans, G., Quiquempois, Y., Douay, M., & Jaouen, Y. (2008). Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm. Applied Physics Letters, 92(6), 061113. [25] Einstein, A. (1917). Zur quantentheorie der strahlung. Phys. Z., 18, 121-128
|