跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙又暄
研究生(外文):You-XuanZhao
論文名稱:全無機溶液製程量子點發光二極體之研製
論文名稱(外文):Investigation and Fabrication of All Inorganic Solution-Process Quantum Dot Light-Emitting Diodes
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:71
中文關鍵詞:量子點氧化鎳奈米粒子氧化鋅奈米粒子摻鎂氧化鋅奈米粒子激子焠滅全無機量子點發光二極體
外文關鍵詞:Quantum DotsNiO nanoparticlesZnO nanoparticlesMgZnO nanoparticlesexciton quenchingall-inorganic quantum dots light emitting diodes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
量子點近年來已廣泛運用於各式光電元件上,本篇論文中,已成功利用全無機材料製作量子點發光二極體,其元件結構以量子點發光層沉積於以溶液r製程製備的無機金屬氧化物載子傳輸層之間,透過電子電洞於載子傳輸層中的傳導與注入,使元件得以在量子點當中發光。本研究中所使用的量子點是以硒化鎘@硫化鋅所形成的漸變接面核殼式巨型量子點,並均勻分散於辛烷當中,因而得以進行溶液製程。
在本研究中的第一個部分主要探討無機電洞傳輸層材料,氧化鎳因為本身具備的導電性與光學穿透性,使其成為最可行的無機電洞傳輸材料。傳統上以高於攝氏300度的高溫將溶膠凝膠狀的氧化鎳前驅物轉化為氧化鎳薄膜。而本研究所使用的氧化鎳奈米粒子,可經由旋轉塗佈與相對低溫的退火製程得到較佳的氧化鎳薄膜,搭配氧化鋅奈米粒子電子傳輸層製作成完整量子點發光元件,具有最大亮度14,861 cd/m2以及最大電流效率1.336 cd/A的特性並減少製程上花費的時間與設備成本。
第二與第三部分的研究分別探討氧化鋅電子傳輸層與氧化鎳電洞傳輸層所造成激子焠滅的問題與改善。在電子傳輸層部分,透過鎂摻雜來調變氧化鋅當中的缺陷能階,抑制激子的焠滅,量測結果發現10%莫耳分率的鎂摻雜可得到最佳發光特性,其最大亮度與最高電流效率分別為39,483 cd/m2及4.072 cd/A。在電洞傳輸層的部分則是透過原子層沉積系統在氧化鎳與量子點發光層之間形成一層高品質的氧化鋁薄膜,抑制氧化鎳表面鍵結與量子點間的交互作用,並在最大亮度與最高電流效率分別得到1.77倍與1.25倍的改善。
Quantum Dots (QDs) are widely used in optoelectronic devices in recent years. In this thesis, all-inorganic quantum dot light emitting diodes fabrication technology has been developed. The device structure comprises of QDs emitting layer sandwiched between solution-process inorganic metal oxide charge transport layers, and photons were generated in QDs emitting layer via the injection of electrons and holes from electron transport layers (ETLs) and hole transport layers (HTLs). The QDs used in this research is interface grading giant QDs with core/shell structure of CdSe@ZnS/ZnS, and dispersed in the solvent of octane, which is beneficial for solution-process.
In the first part of this research, HTLs are explored. For inorganic HTLs, NiO is one of the most promising materials due to its high conductivity and optical transparency. Traditionally, NiO is formed through the sol-gel process with thermally transforming the precursor solution to NiO films under a relatively high temperature of over 300˚C. In this research, NiO nanoparticles (NPs) are employed and can be formed by spin-coating and annealing at a relatively low temperature of 150˚C which can decrease the cost in devices fabrication. The QLED based on NiO NPs pmHTL with ZnO NPs ETL possesses the characteristics of the maximum luminance of 14,861 cd/m2 and the highest current efficiency of 1.336 cd/A.
The second and third part in this investigation explore the QDs exciton quenching resulted from ZnO ETL and NiO HTL respectively. For the electron transport, the intragap state and conductivity induced from the oxygen vacancies in ZnO can be reduced by the doping of Mg into ZnO NPs. The performance of QLEDs can be improved owing to the suppression of exciton quenching and the balance of charge recombination with the Mg doped ZnO NPs. The maximum luminance of 39,483 cd/m2 and the highest current efficiency of 4.072 cd/A were achieved with the use of Mg0.1Zn0.9O ETLs.
Furthermore, the exciton quenching resulted from the surface state and dangling bond of NiO can be suppressed by the insertion of an ultrathin high-quality Al2O3 passivating layer deposited via atomic layer deposition (ALD). The characteristic of the maximum luminance and current efficiency are 1.77 and 1.25 times higher than that of the device without passivating layer insertion.
摘要 I
Abstract (English) II
誌謝 IV
Contents VI
Table list VII
Figure list IX
Chapter 1. Introduction 1
1-1 Introduction of quantum dots 1
1-1.1 The composition of quantum dots 1
1-1.2 Introduction of gradient quantum dots 2
1-1.3 Advantages and applications of quantum dots 2
1-2 Introduction of quantum dot light-emitting diodes 3
1-2.1 Structures and excitation mechanisms of quantum dot light-emitting diodes 3
1-2.2 Quantum dot light-emitting diodes types 3
1-3 Motivation 5
Chapter 2. Processing Procedure of All-inorganic QLEDs 11
2-1 Materials 11
2-1.1 Anode 11
2-1.2 Hole transport layer 11
2-1.3 Passivating layer 11
2-1.4 Emitting layer 12
2-1.5 Electron transport layer 12
2-1.6 Cathode 12
2-2 Experiment process 12
2-3 Measurement and analysis 13
Chapter 3. NiO nanoparticles hole transport layer 19
3-1 Literature review 19
3-2 Device fabrication 20
3-3 Experiment result and discussion 20
3-4 Summary 23
Chapter 4. ZnO and MgZnO nanoparticles electron transport layer 33
4-1 Literature review 33
4-2 Device fabrication 34
4-3 Experiment result and discussion 35
4-4 Summary 37
Chapter 5. Passivating layer between hole transport layer and Quantum Dots 47
5-1 Literature review 47
5-2 Device fabrication 48
5-3 Experiment result and discussion 49
5-4 Summary 50
Chapter 6. Conclusion and Future Prospects 56
6-1 Conclusion 56
6-2 Future Prospects 57
6-2.1 Optimize the condition of each layer 57
6-2.2 Introduce Silver nanowires as cathode for all-inorganic QLEDs 57
Reference 62
[1]P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran and S. Surendrakumar, Electroluminescent Organic and Quantum Dot LEDs: The State of the Art, Journal of Display Technology, vol. 11, no. 5, pp. 480-493, 2015.
[2]Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies, Nature Photonics, vol. 7, no. 1, pp. 13-23, 2012.
[3]S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi and V. Bulović, Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting, Advanced Functional Materials, vol. 15, no. 7, pp. 1117-1124, 2005.
[4]T. Zhu et al., Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots, Applied Physics Letters, vol. 92, no. 2, p. 023111, 2008.
[5]H. M. Haverinen, R. A. Myllylä and G. E. Jabbour, Inkjet printing of light emitting quantum dots, Applied Physics Letters, vol. 94, no. 7, p. 073108, 2009.
[6]V. Wood et al., Inkjet-Printed Quantum Dot-Polymer Composites for Full-Color AC-Driven Displays, Advanced Materials, vol. 21, no. 21, pp. 2151-2155, 2009.
[7]L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi and V. Bulović, Contact Printing of Quantum Dot Light-Emitting Devices, Nano Letters, vol. 8, no. 12, pp. 4513-4517, 2008.
[8]T.-H. Kim et al., Full-colour quantum dot displays fabricated by transfer printing, Nature Photonics, vol. 5, no. 3, pp. 176-182, 2011.
[9]V. A. Shchukin and D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces, Reviews of Modern Physics, vol. 71, no. 4, pp. 1125-1171, 1999.
[10]J. A. Hollingsworth and V. I. Klimov, Nanocrystal Quantum Dots 2nd edn, Ch. 1 (CRC, 2010).
[11]W. K. Bae, K. Char, H. Hur and S. Lee, Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients, Chemistry of Materials, vol. 20, no. 2, pp. 531-539, 2008.
[12]K. H. Lee et al., Over 40 cd/A Efficient Green Quantum Dot Electroluminescent Device Comprising Uniquely Large-Sized Quantum Dots, ACS Nano, vol. 8, no. 5, pp. 4893-4901, 2014.
[13]D. J. Norris, M. G. Bawendi and L. E. Brus, Molecular Electronics: A “Chemistry for the 21st Century Monograph Ch. 9 (Blackwell Science, 1997).
[14]J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi and K. F. Jensen, Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites, Advanced Materials, vol. 12, no. 15, pp. 1102-1105, 2000.
[15]W. K. Bae, S. Brovelli and V. I. Klimov, Spectroscopic insights into the performance of quantum dot light-emitting diodes, MRS Bulletin, vol. 38, no. 9, pp. 721-730, 2013.
[16]W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, and A. Meijerink, Blueing, Bleaching, and Blinking of Single CdSe/ZnS Quantum Dots, ChemPhysChem, vol. 3, no. 10, pp. 871-879, 2002.
[17]V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, vol. 370, no. 6488, pp. 354-357, 1994.
[18]J. W. Stouwdam and R. A. J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers, Journal of Materials Chemistry, vol. 18, no. 16, p. 1889, 2008.
[19]A. G. Pattantyus-Abraham et al., Depleted-Heterojunction Colloidal Quantum Dot Solar Cells, ACS Nano, vol. 4, no. 6, pp. 3374-3380, 2010.
[20]B. N. Pal, I. Robel, A. Mohite, R. Laocharoensuk, D. J. Werder and V. I. Klimov, High-Sensitivity p-n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots, Advanced Functional Materials, vol. 22, no. 8, pp. 1741-1748, 2012.
[21]G. Konstantatos et al., Ultrasensitive solution-cast quantum dot photodetectors, Nature, vol. 442, no. 7099, pp. 180-183, 2006.
[22]W. K. Koh, S. R. Saudari, A. T. Fafarman, C. R. Kagan and C. B. Murray, Thiocyanate-Capped PbS Nanocubes: Ambipolar Transport Enables Quantum Dot Based Circuits on a Flexible Substrate, Nano Letters, vol. 11, no. 11, pp. 4764-4767, 2011.
[23]M. J. Panzer, K. E. Aidala, P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulović, Nanoscale Morphology Revealed at the Interface Between Colloidal Quantum Dots and Organic Semiconductor Films, Nano Letters, vol. 10, no. 7, pp. 2421-2426, 2010.
[24]M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford and V. I. Klimov, Nanocrystal-Based Light-Emitting Diodes Utilizing High-Efficiency Nonradiative Energy Transfer for Color Conversion, Nano Letters, vol. 6, no. 7, pp. 1396-1400, 2006.
[25]M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske and V. I. Klimov, Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well, Nature, vol. 429, no. 6992, pp. 642-646, 2004.
[26]B. O. Dabbousi, M. G. Bawendi, O. Onitsuka and M. F. Rubner, Electroluminescence from CdSe quantum‐dot/polymer composites, Applied Physics Letters, vol. 66, no. 11, pp. 1316-1318, 1995.
[27]S. Coe, W. K. Woo, M. Bawendi and V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, vol. 420, no. 6917, pp. 800-803, 2002.
[28]R. H. Friend et al., Electroluminescence in conjugated polymers, Nature, vol. 397, no. 6715, pp. 121-128, 1999.
[29]P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Thompson, Reliability and degradation of organic light emitting devices, Applied Physics Letters, vol. 65, no. 23, pp. 2922-2924, 1994.
[30]A. H. Mueller et al., Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers, Nano Letters, vol. 5, no. 6, pp. 1039-1044, 2005.
[31]J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović and M. G. Bawendi, Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers, Nature Photonics, vol. 2, no. 4, pp. 247-250, 2008.
[32]V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi and V. Bulović, Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs, ACS Nano, vol. 3, no. 11, pp. 3581-3586, 2009.
[33]J. R. Manders et al., High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays, Journal of the Society for Information Display, vol. 23, no. 11, pp. 523-528, 2015.
[34]L. Qian, Y. Zheng, J. Xue and P. H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures, Nature Photonics, vol. 5, no. 9, pp. 543-548, 2011.
[35]J. M. Caruge, J. E. Halpert, V. Bulović and M. G. Bawendi, NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices, Nano Letters, vol. 6, no. 12, pp. 2991-2994, 2006.
[36]B. S. Mashford, T. L. Nguyen, G. J. Wilson and P. Mulvaney, All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing, J. Mater. Chem., vol. 20, no. 1, pp. 167-172, 2010.
[37]H. T. Nguyen, N. D. Nguyen and S. Lee, Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs, Nanotechnology, vol. 24, no. 11, p. 115201, 2013.
[38]L. Y. Tan, X. L. Zhang, H. T. Dai, J. L. Zhao, S. G. Wang and X. W. Sun, “NiO as Hole Transport Layers for All-inorganic Quantum Dot LEDs, Proc. SPIE 8641, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVII, 86410H, March 4, 2013.
[39]F. Jiang, W. C. H. Choy, X. Li, D. Zhang and J. Cheng, Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices, Advanced Materials, vol. 27, no. 18, pp. 2930-2937, 2015.
[40]J. Du et al., Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature, Applied Physics A, vol. 117, no. 2, pp. 815-822, 2014.
[41]W. Ji, S. Liu, H. Zhang, R. Wang, W. Xie and H. Zhang, Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes, ACS Photonics, vol. 4, no. 5, pp. 1271-1278, 2017.
[42]J. Kwak et al., Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure, Nano Letters, vol. 12, no. 5, pp. 2362-2366, 2012.
[43]X. Yang et al., Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes, Small, vol. 10, no. 2, pp. 247-252, 2013.
[44]H. Zhang, S. Wang, X. Sun and S. Chen, Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes, Journal of Materials Chemistry C, vol. 5, no. 4, pp. 817-823, 2017.
[45]F. Cao et al., High-Efficiency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer, Advanced Functional Materials, vol. 27, no. 42, p. 1704278, 2017.
[46]Z. Huang, G. Natu, Z. Ji, M. He, M. Yu and Y. Wu, Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol. 116, no. 50, pp. 26239-26246, 2012.
[47]A. Garcia, G. Welch, E. Ratcliff, D. Ginley, G. Bazan and D. Olson, Improvement of Interfacial Contacts for New Small-Molecule Bulk-Heterojunction Organic Photovoltaics, Advanced Materials, vol. 24, no. 39, pp. 5368-5373, 2012.
[48]S. Chen, J. R. Manders, S. W. Tsang and F. So, Metal oxides for interface engineering in polymer solar cells, Journal of Materials Chemistry, vol. 22, no. 46, p. 24202, 2012.
[49]S. P. Mitoff, Electrical Conductivity and Thermodynamic Equilibrium in Nickel Oxide, The Journal of Chemical Physics, vol. 35, no. 3, pp. 882-889, 1961.
[50]B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. Prabhakara Rao and V. K. Vaidyan, Preparation of transparent and semiconducting NiO films, Vacuum, vol. 68, no. 2, pp. 149-154, 2002.
[51]S. Mrowec and Z. Grzesik, Oxidation of nickel and transport properties of nickel oxide, Journal of Physics and Chemistry of Solids, vol. 65, no. 10, pp. 1651-1657, 2004.
[52]Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang and S. Chen, A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes, Nanoscale, vol. 11, no. 3, pp. 1021-1028, 2019.
[53]B. S. Mashford et al., High-efficiency quantum-dot light-emitting devices with enhanced charge injection, Nature Photonics, vol. 7, no. 5, pp. 407-412, 2013.
[54]K. Lee et al., Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer, ACS Nano, vol. 9, no. 11, pp. 10941-10949, 2015.
[55]J. H. Kim et al., Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots, Nanoscale, vol. 7, no. 12, pp. 5363-5370, 2015.
[56]Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang and S. Chen, Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer, Nanoscale, vol. 9, no. 26, pp. 8962-8969, 2017.
[57]W. K. Bae et al., Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes, Nature Communications, vol. 4, no. 1, 2013.
[58]L. Wang et al., A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers, Journal of Materials Chemistry C, vol. 6, no. 30, pp. 8099-8104, 2018.
[59]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, no. 7016, pp. 488-492, 2004.
[60]E. Fortunato, P. Barquinha and R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, Advanced Materials, vol. 24, no. 22, pp. 2945-2986, 2012.
[61]H. H. Kim et al., Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO, Scientific Reports, vol. 5, no. 1, 2015.
[62]H. Zhang et al., Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes, ACS Applied Materials & Interfaces, vol. 8, no. 45, pp. 31385-31391, 2016.
[63]X. Dai et al., Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature, vol. 515, no. 7525, pp. 96-99, 2014.
[64]S. Liu, S. Ho, Y. Chen and F. So, Passivation of Metal Oxide Surfaces for High-Performance Organic and Hybrid Optoelectronic Devices, Chemistry of Materials, vol. 27, no. 7, pp. 2532-2539, 2015.
[65]H. M. Kim, A. R. bin Mohd Yusoff, J. H. Youn and J. Jang, Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness, Journal of Materials Chemistry C, vol. 1, no. 25, p. 3924, 2013.
[66]N. Kirkwood, B. Singh and P. Mulvaney, Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer, Advanced Materials Interfaces, vol. 3, no. 22, p. 1600868, 2016.
[67]Z. Zhang et al., High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots, Advanced Materials, vol. 30, no. 28, p. 1801387, 2018.
[68]J. H. Kim et al., Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer, Chemistry of Materials, vol. 27, no. 1, pp. 197-204, 2014.
[69]C. J. Ku et al., “Improvement of Negative Bias Stress Stability in Mg0.03Zn0.97O Thin-Film Transistors, IEEE Electron Device Lett. ,36, 914–916, 2015.
[70]A. Castelli et al., High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers, Nano Letters, vol. 15, no. 8, pp. 5455-5464, 2015.
[71]E. L. Ratcliff et al., Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics, Chemistry of Materials, vol. 23, no. 22, pp. 4988-5000, 2011.
[72]W. Ji, H. Shen, H. Zhang, Z. Kang and H. Zhang, Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer, Nanoscale, vol. 10, no. 23, pp. 11103-11109, 2018.
[73]R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol. 97, no. 12, p. 121301, 2005.
[74]B. Hoex, J. Schmidt, P. Pohl, M. van de Sanden and W. Kessels, Silicon surface passivation by atomic layer deposited Al2O3, Journal of Applied Physics, vol. 104, no. 4, p. 044903, 2008.
[75]P. Jing et al., Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode, Scientific Reports, vol. 5, no. 1, 2015.
[76]D. Bryant et al., A Transparent Conductive Adhesive Laminate Electrode for High-Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells, Advanced Materials, vol. 26, no. 44, pp. 7499-7504, 2014.
[77]H. G. Cheong, R. E. Triambulo, G. H. Lee, I. S. Yi and J. W. Park, Silver Nanowire Network Transparent Electrodes with Highly Enhanced Flexibility by Welding for Application in Flexible Organic Light-Emitting Diodes, ACS Applied Materials & Interfaces, vol. 6, no. 10, pp. 7846-7855, 2014.
[78]J. Liang et al., Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes, ACS Nano, vol. 8, no. 2, pp. 1590-1600, 2014.
[79]W. Gaynor et al., Color in the Corners: ITO-Free White OLEDs with Angular Color Stability, Advanced Materials, vol. 25, no. 29, pp. 4006-4013, 2013.
[80]R. Zhu et al., Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors, ACS Nano, vol. 5, no. 12, pp. 9877-9882, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top