|
[1]P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran and S. Surendrakumar, Electroluminescent Organic and Quantum Dot LEDs: The State of the Art, Journal of Display Technology, vol. 11, no. 5, pp. 480-493, 2015. [2]Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies, Nature Photonics, vol. 7, no. 1, pp. 13-23, 2012. [3]S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi and V. Bulović, Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting, Advanced Functional Materials, vol. 15, no. 7, pp. 1117-1124, 2005. [4]T. Zhu et al., Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots, Applied Physics Letters, vol. 92, no. 2, p. 023111, 2008. [5]H. M. Haverinen, R. A. Myllylä and G. E. Jabbour, Inkjet printing of light emitting quantum dots, Applied Physics Letters, vol. 94, no. 7, p. 073108, 2009. [6]V. Wood et al., Inkjet-Printed Quantum Dot-Polymer Composites for Full-Color AC-Driven Displays, Advanced Materials, vol. 21, no. 21, pp. 2151-2155, 2009. [7]L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi and V. Bulović, Contact Printing of Quantum Dot Light-Emitting Devices, Nano Letters, vol. 8, no. 12, pp. 4513-4517, 2008. [8]T.-H. Kim et al., Full-colour quantum dot displays fabricated by transfer printing, Nature Photonics, vol. 5, no. 3, pp. 176-182, 2011. [9]V. A. Shchukin and D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces, Reviews of Modern Physics, vol. 71, no. 4, pp. 1125-1171, 1999. [10]J. A. Hollingsworth and V. I. Klimov, Nanocrystal Quantum Dots 2nd edn, Ch. 1 (CRC, 2010). [11]W. K. Bae, K. Char, H. Hur and S. Lee, Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients, Chemistry of Materials, vol. 20, no. 2, pp. 531-539, 2008. [12]K. H. Lee et al., Over 40 cd/A Efficient Green Quantum Dot Electroluminescent Device Comprising Uniquely Large-Sized Quantum Dots, ACS Nano, vol. 8, no. 5, pp. 4893-4901, 2014. [13]D. J. Norris, M. G. Bawendi and L. E. Brus, Molecular Electronics: A “Chemistry for the 21st Century Monograph Ch. 9 (Blackwell Science, 1997). [14]J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi and K. F. Jensen, Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites, Advanced Materials, vol. 12, no. 15, pp. 1102-1105, 2000. [15]W. K. Bae, S. Brovelli and V. I. Klimov, Spectroscopic insights into the performance of quantum dot light-emitting diodes, MRS Bulletin, vol. 38, no. 9, pp. 721-730, 2013. [16]W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, and A. Meijerink, Blueing, Bleaching, and Blinking of Single CdSe/ZnS Quantum Dots, ChemPhysChem, vol. 3, no. 10, pp. 871-879, 2002. [17]V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, vol. 370, no. 6488, pp. 354-357, 1994. [18]J. W. Stouwdam and R. A. J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers, Journal of Materials Chemistry, vol. 18, no. 16, p. 1889, 2008. [19]A. G. Pattantyus-Abraham et al., Depleted-Heterojunction Colloidal Quantum Dot Solar Cells, ACS Nano, vol. 4, no. 6, pp. 3374-3380, 2010. [20]B. N. Pal, I. Robel, A. Mohite, R. Laocharoensuk, D. J. Werder and V. I. Klimov, High-Sensitivity p-n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots, Advanced Functional Materials, vol. 22, no. 8, pp. 1741-1748, 2012. [21]G. Konstantatos et al., Ultrasensitive solution-cast quantum dot photodetectors, Nature, vol. 442, no. 7099, pp. 180-183, 2006. [22]W. K. Koh, S. R. Saudari, A. T. Fafarman, C. R. Kagan and C. B. Murray, Thiocyanate-Capped PbS Nanocubes: Ambipolar Transport Enables Quantum Dot Based Circuits on a Flexible Substrate, Nano Letters, vol. 11, no. 11, pp. 4764-4767, 2011. [23]M. J. Panzer, K. E. Aidala, P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulović, Nanoscale Morphology Revealed at the Interface Between Colloidal Quantum Dots and Organic Semiconductor Films, Nano Letters, vol. 10, no. 7, pp. 2421-2426, 2010. [24]M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford and V. I. Klimov, Nanocrystal-Based Light-Emitting Diodes Utilizing High-Efficiency Nonradiative Energy Transfer for Color Conversion, Nano Letters, vol. 6, no. 7, pp. 1396-1400, 2006. [25]M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske and V. I. Klimov, Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well, Nature, vol. 429, no. 6992, pp. 642-646, 2004. [26]B. O. Dabbousi, M. G. Bawendi, O. Onitsuka and M. F. Rubner, Electroluminescence from CdSe quantum‐dot/polymer composites, Applied Physics Letters, vol. 66, no. 11, pp. 1316-1318, 1995. [27]S. Coe, W. K. Woo, M. Bawendi and V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, vol. 420, no. 6917, pp. 800-803, 2002. [28]R. H. Friend et al., Electroluminescence in conjugated polymers, Nature, vol. 397, no. 6715, pp. 121-128, 1999. [29]P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Thompson, Reliability and degradation of organic light emitting devices, Applied Physics Letters, vol. 65, no. 23, pp. 2922-2924, 1994. [30]A. H. Mueller et al., Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers, Nano Letters, vol. 5, no. 6, pp. 1039-1044, 2005. [31]J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović and M. G. Bawendi, Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers, Nature Photonics, vol. 2, no. 4, pp. 247-250, 2008. [32]V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi and V. Bulović, Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs, ACS Nano, vol. 3, no. 11, pp. 3581-3586, 2009. [33]J. R. Manders et al., High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays, Journal of the Society for Information Display, vol. 23, no. 11, pp. 523-528, 2015. [34]L. Qian, Y. Zheng, J. Xue and P. H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures, Nature Photonics, vol. 5, no. 9, pp. 543-548, 2011. [35]J. M. Caruge, J. E. Halpert, V. Bulović and M. G. Bawendi, NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices, Nano Letters, vol. 6, no. 12, pp. 2991-2994, 2006. [36]B. S. Mashford, T. L. Nguyen, G. J. Wilson and P. Mulvaney, All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing, J. Mater. Chem., vol. 20, no. 1, pp. 167-172, 2010. [37]H. T. Nguyen, N. D. Nguyen and S. Lee, Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs, Nanotechnology, vol. 24, no. 11, p. 115201, 2013. [38]L. Y. Tan, X. L. Zhang, H. T. Dai, J. L. Zhao, S. G. Wang and X. W. Sun, “NiO as Hole Transport Layers for All-inorganic Quantum Dot LEDs, Proc. SPIE 8641, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVII, 86410H, March 4, 2013. [39]F. Jiang, W. C. H. Choy, X. Li, D. Zhang and J. Cheng, Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices, Advanced Materials, vol. 27, no. 18, pp. 2930-2937, 2015. [40]J. Du et al., Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature, Applied Physics A, vol. 117, no. 2, pp. 815-822, 2014. [41]W. Ji, S. Liu, H. Zhang, R. Wang, W. Xie and H. Zhang, Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes, ACS Photonics, vol. 4, no. 5, pp. 1271-1278, 2017. [42]J. Kwak et al., Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure, Nano Letters, vol. 12, no. 5, pp. 2362-2366, 2012. [43]X. Yang et al., Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes, Small, vol. 10, no. 2, pp. 247-252, 2013. [44]H. Zhang, S. Wang, X. Sun and S. Chen, Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes, Journal of Materials Chemistry C, vol. 5, no. 4, pp. 817-823, 2017. [45]F. Cao et al., High-Efficiency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer, Advanced Functional Materials, vol. 27, no. 42, p. 1704278, 2017. [46]Z. Huang, G. Natu, Z. Ji, M. He, M. Yu and Y. Wu, Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol. 116, no. 50, pp. 26239-26246, 2012. [47]A. Garcia, G. Welch, E. Ratcliff, D. Ginley, G. Bazan and D. Olson, Improvement of Interfacial Contacts for New Small-Molecule Bulk-Heterojunction Organic Photovoltaics, Advanced Materials, vol. 24, no. 39, pp. 5368-5373, 2012. [48]S. Chen, J. R. Manders, S. W. Tsang and F. So, Metal oxides for interface engineering in polymer solar cells, Journal of Materials Chemistry, vol. 22, no. 46, p. 24202, 2012. [49]S. P. Mitoff, Electrical Conductivity and Thermodynamic Equilibrium in Nickel Oxide, The Journal of Chemical Physics, vol. 35, no. 3, pp. 882-889, 1961. [50]B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. Prabhakara Rao and V. K. Vaidyan, Preparation of transparent and semiconducting NiO films, Vacuum, vol. 68, no. 2, pp. 149-154, 2002. [51]S. Mrowec and Z. Grzesik, Oxidation of nickel and transport properties of nickel oxide, Journal of Physics and Chemistry of Solids, vol. 65, no. 10, pp. 1651-1657, 2004. [52]Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang and S. Chen, A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes, Nanoscale, vol. 11, no. 3, pp. 1021-1028, 2019. [53]B. S. Mashford et al., High-efficiency quantum-dot light-emitting devices with enhanced charge injection, Nature Photonics, vol. 7, no. 5, pp. 407-412, 2013. [54]K. Lee et al., Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer, ACS Nano, vol. 9, no. 11, pp. 10941-10949, 2015. [55]J. H. Kim et al., Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots, Nanoscale, vol. 7, no. 12, pp. 5363-5370, 2015. [56]Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang and S. Chen, Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer, Nanoscale, vol. 9, no. 26, pp. 8962-8969, 2017. [57]W. K. Bae et al., Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes, Nature Communications, vol. 4, no. 1, 2013. [58]L. Wang et al., A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers, Journal of Materials Chemistry C, vol. 6, no. 30, pp. 8099-8104, 2018. [59]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, no. 7016, pp. 488-492, 2004. [60]E. Fortunato, P. Barquinha and R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, Advanced Materials, vol. 24, no. 22, pp. 2945-2986, 2012. [61]H. H. Kim et al., Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO, Scientific Reports, vol. 5, no. 1, 2015. [62]H. Zhang et al., Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes, ACS Applied Materials & Interfaces, vol. 8, no. 45, pp. 31385-31391, 2016. [63]X. Dai et al., Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature, vol. 515, no. 7525, pp. 96-99, 2014. [64]S. Liu, S. Ho, Y. Chen and F. So, Passivation of Metal Oxide Surfaces for High-Performance Organic and Hybrid Optoelectronic Devices, Chemistry of Materials, vol. 27, no. 7, pp. 2532-2539, 2015. [65]H. M. Kim, A. R. bin Mohd Yusoff, J. H. Youn and J. Jang, Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness, Journal of Materials Chemistry C, vol. 1, no. 25, p. 3924, 2013. [66]N. Kirkwood, B. Singh and P. Mulvaney, Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer, Advanced Materials Interfaces, vol. 3, no. 22, p. 1600868, 2016. [67]Z. Zhang et al., High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots, Advanced Materials, vol. 30, no. 28, p. 1801387, 2018. [68]J. H. Kim et al., Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer, Chemistry of Materials, vol. 27, no. 1, pp. 197-204, 2014. [69]C. J. Ku et al., “Improvement of Negative Bias Stress Stability in Mg0.03Zn0.97O Thin-Film Transistors, IEEE Electron Device Lett. ,36, 914–916, 2015. [70]A. Castelli et al., High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers, Nano Letters, vol. 15, no. 8, pp. 5455-5464, 2015. [71]E. L. Ratcliff et al., Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics, Chemistry of Materials, vol. 23, no. 22, pp. 4988-5000, 2011. [72]W. Ji, H. Shen, H. Zhang, Z. Kang and H. Zhang, Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer, Nanoscale, vol. 10, no. 23, pp. 11103-11109, 2018. [73]R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol. 97, no. 12, p. 121301, 2005. [74]B. Hoex, J. Schmidt, P. Pohl, M. van de Sanden and W. Kessels, Silicon surface passivation by atomic layer deposited Al2O3, Journal of Applied Physics, vol. 104, no. 4, p. 044903, 2008. [75]P. Jing et al., Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode, Scientific Reports, vol. 5, no. 1, 2015. [76]D. Bryant et al., A Transparent Conductive Adhesive Laminate Electrode for High-Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells, Advanced Materials, vol. 26, no. 44, pp. 7499-7504, 2014. [77]H. G. Cheong, R. E. Triambulo, G. H. Lee, I. S. Yi and J. W. Park, Silver Nanowire Network Transparent Electrodes with Highly Enhanced Flexibility by Welding for Application in Flexible Organic Light-Emitting Diodes, ACS Applied Materials & Interfaces, vol. 6, no. 10, pp. 7846-7855, 2014. [78]J. Liang et al., Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes, ACS Nano, vol. 8, no. 2, pp. 1590-1600, 2014. [79]W. Gaynor et al., Color in the Corners: ITO-Free White OLEDs with Angular Color Stability, Advanced Materials, vol. 25, no. 29, pp. 4006-4013, 2013. [80]R. Zhu et al., Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors, ACS Nano, vol. 5, no. 12, pp. 9877-9882, 2011.
|