|
[1] Z. Peng, L. Ran, and C. Li, “A K-band portable FMCW radar with beamforming array for short-range localization and vital-Doppler targets discrimination, IEEE Trans. Microw. Theory Tech., vol. 65, no. 9, pp. 3443–3452, Sep. 2017. [2] G. Pyo, J. Yang, C.-Y. Kim, and S. Hong, “K-band dual-mode receiver CMOS IC for FMCW/UWB radar, IEEE Trans. Circuits Syst. II, Express Briefs, vol. 61, no. 6, pp. 393–397, Jun. 2014 [3] S. Lee, S. Kong, C.-Y Kim, S. Hong, A K-Band CMOS UWB FourChannel Radar Front-End With Coherent Pulsed Oscillator Array, IEEE Trans. Microw. Theory Techn., vol.63, no.5, pp.1735-1745, May 2015. [4] Kim, S.D., Oh, D.G., Lee, J.H.: ‘Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 1710–1713 [5] C. Li, Y. Xiao and J. Lin, “Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector Measuring From Four Sides of a Human Body, IEEE Trans.Microw. Theory Techn., vol.54, No.12, pp. 4464-4471, Dec.,2006. [6] X. Yanming, L. Jenshan, O. Boric-Lubecke, and V. M. Lubecke, A Ka-Band Low Power Doppler Radar System for Remote Detection of Cardiopulmonary Motion, in Proc. 2005 IEEE Medicine and Biology 27th Annual Conference, 2005, pp. 7151-7154. [7] X. Yanming, J. Lin, O. Boric-Lubecke, and M. Lubecke, Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band, IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023-2032, 2006. [8] J. Lee and B. Razavi, A 40-GHz frequency divider in 0.18-μm CMOS technology, IEEE Journal of Solid-State Circuits, vol. 39, no. 4, pp. 594-601, 2004. [9] R. L. Miller, Fractional-Frequency Generators Utilizing Regenerative Modulation, Proceedings of the IRE, vol. 27, no. 7, pp. 446-457, 1939. [10] H. R. Rategh and T. H. Lee, Superharmonic injection-locked frequency dividers, IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, 1999. [11] M. Tiebout, A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider, IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004. [12] A. S. Sedra and K. C. Smith, Microelectronic Circuits. Oxford, U.K.:Oxford Univ. Press, 1991. [13] H. R. Rategh and T. H. Lee, Superharmonic injection-locked frequency dividers, IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, 1999. [14] S. Verma, H. R. Rategh, and T. H. Lee, A unified model for injection-locked frequency dividers, IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, 2003. [15] W. Hui and Z. Lin, A 16-to-18GHz 0.18-m Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2006, pp. 2482-2491. [16] P. K. Tsai, C. C. Liu, and T. H. Huang, Wideband injection-locked divide-by-3 frequen- cy divider design with regenerative second-harmonic feedback technique, in Proc. Euro. Microw. Conf., 2012, pp. 293-296. [17] Y. T. Chen, M. W. Li, H. C. Kuo, T. H. Huang, and H. R. Chuang, Low-Voltage K-Ba- nd Divide-by-3 Injection-Locked Frequency Divider With Floating-Source Differential Injector, IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 60-67, 2012. [18] Y. L. Yeh and H. Y. Chang, Design and Analysis of a W-band Divide-by-Three Injecti- on-Locked Frequency Divider Using Second Harmonic Enhancement Technique, IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1617-1625, 2012. [19] K. H. Chien, J. Y. Chen, and H. K. Chiou, Designs of K-Band Divide-by-2 and Divide- by-3 Injection-Locked Frequency Divider With Darlington Topology, IEEE Trans. Microw. Theory Techn., vol. 63, NO. 9, pp. 2877-2888, Sep 2015 [20] J. Kim, S. Lee, and D.-H. Choi, “Injection-locked frequency divider topology and desi- gn techniques for wide locking-range and high-order division, IEEE Access, vol. 5, pp. 4410–4417, 2017. [21] J.-W. Wu, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu, “Divide-by-three injectio- n-locked frequency divider combined with divide-by-two locking, IEEE Microw. Wireless Compon. Lett.,vol. 23, no. 11, pp. 590–592, 2013. [22] B. E. Seow, T. H. Huang, C. Y. Wu, P. Y. Pao, and H. R. Chuang, A Low-Voltage 30- GHz CMOS Divide-by-Three ILFD With Injection-Switched Cross-Coupled Pair Technique, IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1560-1568, 2017. [23] B. Razavi, A study of injection locking and pulling in oscillators, IEEE Journal of So- lid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004. [24] J. C. Nallatamby, M. Prigent, M. Camiade, and J. Obregon, Phase noise in oscillators - Leeson formula revisited, IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1386-1394, Apr. 2003. [25] K. W. Cheng, K. Natarajan, and D. J. Allstot, A current reuse quadrature GPS receiver in 0.13 µm CMOS, IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 510-523, Mar. 2010. [26] Alessandro Garghetti, Andrea L. Lacaita, and Salvatore Levantino, A Low-Power and Wide-Locking-RangeInjection-Locked Frequency Divider by Three withDual-Injection Divide-by-Two Technique, Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1-4, May, 2018. [27] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229–231,Apr. 2010. [28] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking range, millimeter-wave divide-by-5 injection-locked frequency dividers, IEEE Trans. Microw. Theory Techn. , vol. 60, no. 3, pp. 679–685, Mar. 2012. [29] P.-K. Tsai, T.-H. Huang and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider, IET Electronics Letters, vol.46, no.14, pp.1003-1004, Jul. 2010. [30] Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider, IEEE Trans. Microw. Theory Techn. vol. 59, no. 10, pp. 2477–2485, Oct. 2011. [31] Z. D. Huang, C. Y. Wu, and B. C. Huang, Design of 24-GHz 0.8-V 1.51-mW Coupling Current-Mode Injection-Locked Frequency Divider With Wide Locking Range, IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1948-1958, 2009. [32] D. B. Leeson, “A simple model of feedback oscillator noise spectrum, in Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966. [33] C.-C. Chan, T.-H. Lin, and H.-Y. Chang, “A 31.2% locking range K-band divide-by- 6 injection-locked frequency divider using 90 nm CMOS technology, in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, May 2015, pp. 1–3. [34] T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa,“A 13.2% locking- range divide-by-6, 3.1 mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, in Proc. ESSCIRC, Bucharest, Romania, 2013, pp. 403–406. [35] Y. S. Lin, W. H. Huang, C. L. Lu, and Y. H. Wang, “Wide-locking-range multi-phase- outputs regenerative frequency dividers using even-harmonic mixers and CML loop dividers, IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3065–3075, Dec. 2014. [36] S.-M. Li, H.-N. Yeh, and H.-Y. Chang , “A V-band 90-nm CMOS Divide-by-10 Injection-Locked Frequency Divider Using Current-Reused Topology, IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 79–78, Jan 2018
|