(3.234.221.162) 您好!臺灣時間:2021/04/14 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾冠集
研究生(外文):Kuan-ChiTseng
論文名稱:應用於毫米波之高除數注入鎖定除頻器設計
論文名稱(外文):Millimeter-Wave High-Division-Ratio Injection-Locked Frequency Divider Designs
指導教授:黃尊禧
指導教授(外文):Tzuen-Hsi Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:79
中文關鍵詞:注入鎖定注入鎖定除頻器交互耦合對注入技巧除頻器K-band多模態
外文關鍵詞:injection-lockedinjection-locked frequency dividerILFD with an injection-switched cross-coupled pair techniqueK-bandmulti- modulus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文為設計應用於毫米波之高除數注入鎖定除頻器,所設計的電路有二;其中之一為K-band之注入鎖定除三除頻器整合前級放大器;另一為多模態電流再利用式注入鎖定除頻器,此等除頻器為鎖相迴路中最為重要的部分之一,可應用於雷達、無線通訊系統之中。本論文中所設計的兩個除頻器皆使用TSMC 90-nm CMOS製程進行設計並實現。
本論文中的第一個電路是K-band之注入鎖定除三除頻器整合前級放大器,在除頻器的部分採用交互耦合對注入技巧除三除頻器。另外使用疊接共源極放大器作為前級放大器,此電路設計之目的為便於此除頻器整合進鎖相迴路之中。在此注入鎖定除頻器輸入端加上放大器,可以增加除頻器之注入鎖定靈敏度。此電路之自由振盪頻率為8.01 GHz。在注入訊號為-10 dBm時,鎖定頻率為20.5 GHz到25.4 GHz,其鎖定頻寬共4.9 GHz。而在注入訊號為-40 dBm時因有前級放大器之故,其鎖定頻寬仍具有0.4 GHz的鎖定頻寬。在此電路中,前級放大器之功率消耗為2.37 mW,而注入鎖定除頻器的功率消耗為1.7 mW。
本論文中的第二個電路為多模態電流再利用式注入鎖定除頻器,此電路具有多組除數模態其共有除二、除四、除六、除八及除十,五組的除數模態。工作頻段涵蓋相當大,因此可用於整合雷達、通訊系統之鎖相迴路當中。此除頻器之架構主要為將交互耦合對注入技巧除頻器與一電流邏輯式除二電路進行串聯疊接,其中更加上可切換電容用以增加其鎖定頻寬。此電路偏壓在電壓0.9 V,其功率消耗為6.12 mW。當可切換容值為最大和最小值時,此除頻器之自由振盪頻率分別為3.656 GHz及4.19 GHz。最低工作頻率為2.7 GHz,而最高工作頻率為41.2 GHz,其中2.7 GHz到29 GHz為此除頻器之連續工作頻寬。而在除六模態時,具有最大之鎖定頻寬,其鎖定頻率為11.9 GHz到27 GHz,共15.1 GHz的鎖定頻寬。此除頻器之工作頻段涵蓋了整個Ku-band、K-band以及4G、5G無線通訊系統之操作頻段,因此可用於雷達、無線通訊系統等相關之整合。
This thesis presents two millimeter-wave high-division-ratio injection-locked frequency divider designs, including a K-band divide-by-3 injection-locked frequency divider (ILFD) and a multi-modulus current-reused injection-locked frequency divider. Frequency divider is one of the most important parts of phase-locked loop (PLL). And the frequency divider can be applied in radar and wireless communication systems. Both of the circuit, in this thesis, are designed and implemented in TSMC 90-nm CMOS process.
The first circuit is that a K-band divide-by-3 injection-locked frequency divider integrating with pre-amplifiers. We adopt the topology of the divide-by-3 ILFD with an injection-switched cross-coupled pair (IS-CPP) technique and a cascode common source (CS) amplifer as our designed circuit. Such a design is convenient to integrate the divider into the PLL. Because of the pre-amplifier, the input sensitivity of the divider is enhanced. The free-running frequency of the designed divider is at 8.01 GHz. When the input power of the injection signal is -10 dBm, the measured locking range is 4.9 GHz (between 20.5 GHz and 25.4 GHz). When the input power of the injection signal is -40 dBm, the measured locking range is still kept with 0.4 GHz (between 23.9 GHz and 24.3 GHz). The power consumptions of the amplifier and the ILFD are 2.37 mW and 1.7 mW, respectively.
The second design is that a multi-modulus current-reused injection-locked frequency divider (ILFD). This divider has five division-ratio modes (with the division ratios of 2, 4, 6, 8 and 10). The free-runing frequency at the maximum and minimum values are 3.656 GHz and 4.19 GHz, respectively, when the switching capacitance. The lowest and highest operation frequency of this divider is 2.7 GHz and 41.2 GHz, respectively. And the divide-by-6 mode has the widest locking range of the divider, the locking range is 15.1 GHz between 11.9 GHz and 27 GHz. The power consumption is 6.12 mW at 0.9 V supply voltage. And the range of the operation frequency bands is quite wide. Therefore, it can be applied to the integration of the radar or 4G, 5G wireless communication systems.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 3
第二章 K-band 之注入鎖定除三除頻器整合前級放大器 4
2.1 除頻器簡介 4
2.1.1 靜態除頻器 5
2.1.2 米勒除頻器 5
2.1.3 注入鎖定除頻器 6
2.1.4 注入鎖定除三除頻器 7
2.2 交互耦合對注入技巧除三除頻器 10
2.2.1 注入鎖定除頻器原理 10
2.2.2 交互耦合對注入技巧除三除頻器 13
2.3 電路設計與實現 19
2.3.1 交互耦合對注入技巧除三除頻器 20
2.3.2 前級放大器 25
2.4 模擬結果 26
2.4.1 交互耦合對注入技巧除三除頻器模擬 26
2.4.2 前級放大器模擬 30
2.4.3 整合電路模擬 31
第三章 多模態電流再利用式注入鎖定除頻器 37
3.1 高除數除頻器 37
3.2 多模態電流再利用式注入鎖定除頻器 39
3.2.1 電路原理 39
3.2.2 多模態除頻器 43
3.3 電路設計與實現 45
3.4 模擬結果 48
第四章 量測結果與討論 55
4.1 K-band之注入鎖定除三除頻器整合前級放大器 55
4.1.1 量測考量 55
4.1.2 量測結果 58
4.2 多模態電流再利用式注入鎖定除頻器 63
4.2.1 量測考量 63
4.2.2 量測結果 65
第五章 結論 76
參考文獻 ………………………………………………………………..77
[1] Z. Peng, L. Ran, and C. Li, “A K-band portable FMCW radar with beamforming array for short-range localization and vital-Doppler targets discrimination, IEEE Trans. Microw. Theory Tech., vol. 65, no. 9, pp. 3443–3452, Sep. 2017.
[2] G. Pyo, J. Yang, C.-Y. Kim, and S. Hong, “K-band dual-mode receiver CMOS IC for FMCW/UWB radar, IEEE Trans. Circuits Syst. II, Express Briefs, vol. 61, no. 6, pp. 393–397, Jun. 2014
[3] S. Lee, S. Kong, C.-Y Kim, S. Hong, A K-Band CMOS UWB FourChannel Radar Front-End With Coherent Pulsed Oscillator Array, IEEE Trans. Microw. Theory Techn., vol.63, no.5, pp.1735-1745, May 2015.
[4] Kim, S.D., Oh, D.G., Lee, J.H.: ‘Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 1710–1713
[5] C. Li, Y. Xiao and J. Lin, “Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector Measuring From Four Sides of a Human Body, IEEE Trans.Microw. Theory Techn., vol.54, No.12, pp. 4464-4471, Dec.,2006.
[6] X. Yanming, L. Jenshan, O. Boric-Lubecke, and V. M. Lubecke, A Ka-Band Low Power Doppler Radar System for Remote Detection of Cardiopulmonary Motion, in Proc. 2005 IEEE Medicine and Biology 27th Annual Conference, 2005, pp. 7151-7154.
[7] X. Yanming, J. Lin, O. Boric-Lubecke, and M. Lubecke, Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band, IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023-2032, 2006.
[8] J. Lee and B. Razavi, A 40-GHz frequency divider in 0.18-μm CMOS technology, IEEE Journal of Solid-State Circuits, vol. 39, no. 4, pp. 594-601, 2004.
[9] R. L. Miller, Fractional-Frequency Generators Utilizing Regenerative Modulation,
Proceedings of the IRE, vol. 27, no. 7, pp. 446-457, 1939.
[10] H. R. Rategh and T. H. Lee, Superharmonic injection-locked frequency dividers,
IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, 1999.
[11] M. Tiebout, A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider, IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp.
1170-1174, Jul. 2004.
[12] A. S. Sedra and K. C. Smith, Microelectronic Circuits. Oxford, U.K.:Oxford Univ. Press,
1991.
[13] H. R. Rategh and T. H. Lee, Superharmonic injection-locked frequency dividers, IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, 1999.
[14] S. Verma, H. R. Rategh, and T. H. Lee, A unified model for injection-locked frequency
dividers, IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, 2003.
[15] W. Hui and Z. Lin, A 16-to-18GHz 0.18-m Epi-CMOS Divide-by-3 Injection-Locked
Frequency Divider, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2006,
pp. 2482-2491.
[16] P. K. Tsai, C. C. Liu, and T. H. Huang, Wideband injection-locked divide-by-3 frequen-
cy divider design with regenerative second-harmonic feedback technique, in Proc. Euro. Microw. Conf., 2012, pp. 293-296.
[17] Y. T. Chen, M. W. Li, H. C. Kuo, T. H. Huang, and H. R. Chuang, Low-Voltage K-Ba-
nd Divide-by-3 Injection-Locked Frequency Divider With Floating-Source Differential Injector, IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 60-67, 2012.
[18] Y. L. Yeh and H. Y. Chang, Design and Analysis of a W-band Divide-by-Three Injecti-
on-Locked Frequency Divider Using Second Harmonic Enhancement Technique, IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1617-1625, 2012.
[19] K. H. Chien, J. Y. Chen, and H. K. Chiou, Designs of K-Band Divide-by-2 and Divide-
by-3 Injection-Locked Frequency Divider With Darlington Topology, IEEE Trans. Microw. Theory Techn., vol. 63, NO. 9, pp. 2877-2888, Sep 2015
[20] J. Kim, S. Lee, and D.-H. Choi, “Injection-locked frequency divider topology and desi-
gn techniques for wide locking-range and high-order division, IEEE Access, vol. 5, pp. 4410–4417, 2017.
[21] J.-W. Wu, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu, “Divide-by-three injectio-
n-locked frequency divider combined with divide-by-two locking, IEEE Microw. Wireless Compon. Lett.,vol. 23, no. 11, pp. 590–592, 2013.
[22] B. E. Seow, T. H. Huang, C. Y. Wu, P. Y. Pao, and H. R. Chuang, A Low-Voltage 30-
GHz CMOS Divide-by-Three ILFD With Injection-Switched Cross-Coupled Pair Technique, IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1560-1568, 2017.
[23] B. Razavi, A study of injection locking and pulling in oscillators, IEEE Journal of So-
lid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[24] J. C. Nallatamby, M. Prigent, M. Camiade, and J. Obregon, Phase noise in oscillators
- Leeson formula revisited, IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1386-1394, Apr. 2003.
[25] K. W. Cheng, K. Natarajan, and D. J. Allstot, A current reuse quadrature GPS receiver
in 0.13 µm CMOS, IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 510-523,
Mar. 2010.
[26] Alessandro Garghetti, Andrea L. Lacaita, and Salvatore Levantino, A Low-Power and
Wide-Locking-RangeInjection-Locked Frequency Divider by Three withDual-Injection Divide-by-Two Technique, Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1-4, May, 2018.
[27] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection-locked
frequency divider with record locking range,IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229–231,Apr. 2010.
[28] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking range, millimeter-wave divide-by-5 injection-locked frequency dividers, IEEE Trans. Microw. Theory Techn. , vol. 60, no. 3, pp. 679–685, Mar. 2012.
[29] P.-K. Tsai, T.-H. Huang and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider, IET Electronics Letters, vol.46, no.14, pp.1003-1004, Jul. 2010.
[30] Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3%
locking-range divide-by-4 frequency divider, IEEE Trans. Microw. Theory Techn. vol.
59, no. 10, pp. 2477–2485, Oct. 2011.
[31] Z. D. Huang, C. Y. Wu, and B. C. Huang, Design of 24-GHz 0.8-V 1.51-mW Coupling
Current-Mode Injection-Locked Frequency Divider With Wide Locking Range, IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1948-1958, 2009.
[32] D. B. Leeson, “A simple model of feedback oscillator noise spectrum, in Proc. IEEE,
vol. 54, pp. 329-330, Feb. 1966.
[33] C.-C. Chan, T.-H. Lin, and H.-Y. Chang, “A 31.2% locking range K-band divide-by-
6 injection-locked frequency divider using 90 nm CMOS technology, in IEEE MTT-S
Int. Microw. Symp. Dig., Phoenix, AZ, USA, May 2015, pp. 1–3.
[34] T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa,“A 13.2% locking-
range divide-by-6, 3.1 mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, in Proc. ESSCIRC, Bucharest, Romania, 2013, pp. 403–406.
[35] Y. S. Lin, W. H. Huang, C. L. Lu, and Y. H. Wang, “Wide-locking-range multi-phase-
outputs regenerative frequency dividers using even-harmonic mixers and CML loop dividers, IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3065–3075, Dec. 2014.
[36] S.-M. Li, H.-N. Yeh, and H.-Y. Chang , “A V-band 90-nm CMOS Divide-by-10 Injection-Locked Frequency Divider Using Current-Reused Topology, IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 79–78, Jan 2018
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔