跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴行健
研究生(外文):Xing-JianLai
論文名稱:倒傳遞神經網路及主成份分析應用於金屬扣件硬度篩選檢測:系統設計與評估
論文名稱(外文):Back Propagation Neural Network and Principal Components Analysis for Metal Fastener Hardness Evaluation: System Design and Estimation
指導教授:戴政祺
指導教授(外文):Cheng-Chi Tai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:渦電流非破壞性檢測硬度神經網路主成份分析
外文關鍵詞:Eddy currentNon-destructive testingHardnessNeural networkPrincipal components analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來工業4.0的提倡,對於金屬工件的品質全檢逐漸受到重視,尤其是航太及汽車所使用的螺絲螺帽、金屬扣件等。目前金屬扣件硬度檢測普遍都採抽樣破壞檢測,但金屬扣件硬度關係著整體機構的安全性,因此金屬扣件的硬度是不可忽略的安全問題。本論文提出一套應用渦電流檢測技術做金屬扣件硬度篩選檢測系統,結合倒傳遞神經網路進行智慧篩選並使用主成份分析法做數據趨勢解析。從文獻可得知金屬工件機械性質與電特性較難以捉摸,無法以簡易方式進行篩選。而工業上使用渦電流進行金屬扣件硬度非破壞檢測時,當遇到硬度判讀模稜兩可的情況時,須藉由經驗人工調整公差圓範圍使達到可接受程度,但此種方式並沒有系統的科學依據,純粹是依操作者的經驗決定。因此本論文嘗試解決此問題,提出應用倒傳遞神經網路進行線上訓練與即時智慧判讀,再使用主成份分析優化公差圓的包覆範圍,最後使用同種鋼材不同硬度的金屬扣件進行實驗來驗證本檢測系統的篩選能力。
The promotion of Industry 4.0 in past years has induced the requirement of the quality inspection of metal works gradually be emphasized. Especially, destructive inspection by sampling is commonly applied to the hardness testing of metal fasteners for aerospace and automobiles. Since the hardness of metal fasteners is related to the safety of the mechanical system, it cannot be neglected. A testing system using eddy currents method for the hardness screening and inspection of metal fasteners is proposed in this study, in which Back Propagation Neural Network (BPNN) is integrated for intelligent screening and Principal Components Analysis (PCA) is utilized for data analysis. Literatures revealed that the mechanical properties and electrical properties of metal work piece were hard to handle that simple methods could not be used for screening. Eddy current testing has been used for non-destructive inspection of metal fastener hardness in industry for decades, the ambiguous hardness interpretation would be manually adjust the tolerance to the acceptable range through experiences. Such a method did not have systematic science reference, but purely depended on operators’ experiences. Attempting to solve such a problem, this study therefore proposes the application of BPNN to online training and real-time interpretation, the use of PCA for optimizing the tolerance range, and the experiments of metal fasteners with same kind of steel but different hardness to prove the screening ability of the inspection system.
摘 要 III
Extended Abstract IV
致謝 X
目錄 XI
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1 研究背景 1
1.2 國內外文獻回顧 2
1.3 研究動機與目的 7
1.4 論文大鋼 8
第二章 理論探討 9
2.1 前言 9
2.2 渦電流檢測金屬扣件硬度原理 9
2.2.1 電磁感應原理 9
2.2.2 影響渦電流檢測之因素 10
2.2.3 渦電流檢測等效模型 12
2.2.4 金屬扣件硬度二維分析圖 14
2.3 移動平均濾波器 15
2.4 人工神經網路概述 17
2.4.1 人工神經元 17
2.4.2 神經網路架構與學習方法 19
2.5 主成份分析簡述 21
第三章 研究方法與設計 23
3.1 前言 23
3.2 改良式移動平均濾波器 23
3.3 倒傳遞神經網路架構與運算方式 25
3.4 主成份分析步驟 32
第四章 系統架構與設計 34
4.1 系統架構簡述 34
4.2 系統硬體架構與設計 35
4.2.1 FPGA硬體流程 35
4.2.2 阻抗曲線特性校準流程 36
4.3 系統介面與操作流程 39
第五章 系統實測與討論 45
5.1檢測探頭與系統外觀 45
5.2 金屬扣件規格與硬度驗證 47
5.3 系統篩選實測 50
5.3.1 A組 — 使用HRC 20-25為標準樣本 51
5.3.2 B組 — 使用HRC 30-35為標準樣本 54
5.3.3 C組 — 使用HRC 40-45為標準樣本 57
5.4 結果與討論 60
第六章 結論與未來展望 68
5.1 結論 68
5.2 未來展望 69
參考文獻 70
附錄 74
[1]S. R. Low, “NIST Recommended Practice Guide: Rockwell Hardness Measurement of Metallic Materials, Special Publication, 2001.
[2]G. E. Dieter and D. J. Bacon, “Mechanical metallurgy (Vol. 3) , New York: McGraw-hill, 1986.
[3]S. S. Udpa and P. O. Moore, “Nondestructive Testing Handbook , Electromagnetic Testing, American Nondestructive Testing Society, vol. 5, 2004.
[4]H. Huang, T. Takagi and T. Uchimoto, “A fast numerical calculation for crack modeling in eddy current testing of ferromagnetic materials, Journal of applied physics, vol. 94, pp. 5866-5872, Nov. 2003.
[5]C. C. Tai, J. H. Rose and J. C. Moulder, “Thickness And Conductivity of Metallic Layers From Pulsed Eddy Current Measurements, Review of Scientific Instruments. vol. 67, no. 11, pp. 3965-3972, 1996.
[6]C. C. Tai, “Characterization of coatings on magnetic metal using the swept frequency eddy current method, Review of Scientific Instruments, vol. 71, no. 8 pp. 3161-3167, 2000.
[7]C. C. Tai, H. C. Yang and Y. H. Lin, “Modeling the surface condition of ferromagnetic metal by the swept-frequency eddy current method, IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 205-210, 2002.
[8]劉尹雄,「脈衝式渦電流檢測系統之設計與應用」,國立成功大學電機工程學系碩士論文,1999。
[9]C. C. Tai and H. C. Yang, “The interaction of eddy current with metal hidden flaws for various probes, Journal of Technology, vol. 17, no. 4, pp. 525-533, 2002.
[10]H. C. Yang and C. C. Tai, “Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate, Measurement Science and Technology, vol. 13, pp. 1259–1265, 2002.
[11]C. C. Tai and S. F. Wang, “Time-Domain and Frequency-Domain Eddy Current Simulations by the Finite Element Method, Key Engineering Materials, vol. 270-273, pp. 585-592, 2004.
[12]Y. L. Pan and C. C. Tai, “Thickness and Conductivity Analysis of Molybdenum Thin Film in CIGS Solar Cells Using Resonant Electromagnetic Testing Method, Magnetics, IEEE Transactions on, vol. 48, pp. 347-350, 2012.
[13]陳林湋,「低頻渦電流金屬厚度檢測系統研製」,國立成功大學電機工程學系碩士論文,2012。
[14]李柏毅,「非接觸式微米級金屬薄膜檢測系統研製及田口法最佳感測線圈設計」,國立成功大學電機工程學系碩士論文,2017。
[15]林茂盛,「架構於FPGA之掃頻式阻抗分析儀暨金屬薄膜厚度估測應用」,國立成功大學電機工程學系碩士論文,2018。
[16]蔡侑倫,「非接觸式微米級印刷電路板銅箔厚度量測系統及多重品質特性之最佳感測線圈設計」,國立成功大學電機工程學系碩士論文,2018。
[17]L. K. Kogan, A. P. Nichipuruk and Gavrilova, L. D. “Effect of the carbon content on the magnetic and electric properties of thermally treated carbon steels and the possibilities of testing the quality of tempering of articles produced from them via the eddy-current method, Russian Journal of Nondestructive Testing, vol. 42, no. 9, pp. 616-629, 2006.
[18]S. Konoplyuk, T. Abe, T. Uchimoto, T. Takagi and M. Kurosawa, “Characterization of ductile cast iron by eddy current method, NDT & E International, vol. 38, no. 8, pp. 623-626, 2005.
[19]S. Konoplyuk, “Estimation of pearlite fraction in ductile cast irons by eddy current method, NDT & E International, vol. 43, no. 4, pp. 360-364, 2010.
[20]T. Uchimoto, T. Takagi, S. Konoplyuk, T. Abe, H. Huang and M. Kurosawa, “Eddy current evaluation of cast iron for material characterization, Journal of Magnetism and magnetic materials, vol. 258–259, pp. 493-496, 2003.
[21]S. H. Khan, F. Ali, A. N. Khan and M. A. Iqbal, “Pearlite determination in plain carbon steel by eddy current method, J. Mater. Process. Technol, vol. 200, no. 1, pp. 316-318, 2008.
[22]D. Mercier, J. Lesagea, X. Decoopmana and D. Chicota, “Eddy currents and hardness testing for evaluation of steel decarburizing, NDT & E International, vol. 39, no. 8, pp. 652-60. 2006.
[23]X. J. Hao, W. Yin, M. Strangwood, A. J. Peyton, P. E. Morris and C. L. Davis, “Off-line measurement of decarburization of steels using a multifrequency electromagnetic sensor, Scripta Materialia, vol. 58, no. 11, pp. 1033-1036, 2008.
[24]S. Kahrobaee, M. Kashefi and A. S. Alam, “Magnetic NDT technology for characterization of decarburizing depth, Surface and Coatings Technology, vol. 205, no. 16, pp. 4083-4088, 2011.
[25]K. V. Rajkumar, B. P. C. Rao, B. Sasi, A. Kumar, T. Jayakumar, B. Raj and K. K. Ray, “Characterization of aging behaviour in M250 grade maraging steel using eddy current non-destructive methodology, Materials Science and Engineering: A, vol. 464, no. 1, pp. 233-240, 2007.
[26]S. H. Khan, A. N. Khan, F. Ali, M. A. Iqbal and H. K. Shukaib, “Study of precipitation behavior at moderate temperatures in 350 maraging steel by eddy current method, Journal of Alloys and Compounds, vol. 474, no. 1, pp. 254-256, 2009.
[27]S. Kahrobaee and M. Kashefi, “Hardness profile plotting using multi-frequency multi-output electromagnetic sensor, NDT & E International, vol. 44, no. 4, pp. 335-338, 2011.
[28]M. Zergoug, S. Lebaili, H. Boudjellal and A. Benchaala, “Relation between mechanical microhardness and impedance variations in eddy current testing, NDT & E International, vol. 37, no. 1, pp. 65-72, 2004.
[29]吳步寧、陳志祥,「鋼材硬度渦流無損檢測技術的研究」,無損檢測, vol. 23, no. 6 , pp. 243-245, 2000。
[30]楊弘吉,「渦電流非破壞性檢測系統之設計及應用」,國立成功大學電機工程學系博士論文,2003。
[31]H. B. Wang, W. Li and Z. H. Feng, “Noncontact Thickness Measurement of Metal Films Using Eddy-Current Sensors Immune to Distance Variation, IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 9, pp. 2557-2564, 2015.
[32]M. Sheikh Amiri and M. Kashefi, “Application of eddy current nondestructive method for determination of surface carbon content in carburized steels, NDT & E International, vol. 42, no. 7, pp. 618-318, 2009.
[33]J. E. Granville, “New key to stock market profits, Prentice-Hall, 1963.
[34]林冠宇,「灰色理論應用於電力設備局部放電狀態監測之趨勢分析」,國立成功大學電機工程學系碩士論文,2017。
[35]M. R. S. Yazdi, A. M. Khorasani and M. Faraji, “Optimization of coating variables for hardness of industrial tools by using artificial neural networks, Expert Systems with Applications, vol. 38, no. 10, pp.12116-12127,2011.
[36]陳毅倫,「電力電纜良率檢測系統」,國立成功大學電機工程學系碩士論文,2016。
[37]許元瑞,「結合類神經網路學習機制與溫度參考曲線模型之模糊溫度控制器於電磁熱療系統之應用」,國立成功大學電機工程學系碩士論文,2016。
[38]吳婉容,「Elman動態類神經應用於模鑄式比壓器老化狀態監測系統之評估」,國立成功大學電機工程學系碩士論文,2018。
[39]K. L. Du and M. N. Swamy, “Neural networks and statistical learning, Springer Science & Business Media, 2013.
[40]G. Chen, K. Fu, Z. Liang, T. Sema, C. Li, P. Tontiwachwuthikul and R. Idem, “The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process, Journal of Fuel, vol. 126, no. 15, pp. 202-212, 2014.
[41]F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain, Psychological review, vol. 65, no. 6, pp. 386-408, 1958.
[42]M. Sugiyama, “Introduction to statistical machine learning, Morgan Kaufmann, 2015.
[43]D. R. Hush and B. G. Horne, “Progress in supervised neural network, IEEE signal processing magazine, vol. 10, no. 1, pp.8-39, 1993.
[44]J. Villiers and E. Barnard, “Back-propagation neural nets with one and two hidden layers, IEEE transactions on neural networks, vol. 4, no. 1, pp. 136-141, 1993.
[45]T. Y. Kwok and D. Y. Yeung, “Constructive algorithms for structure learning in feedforward neural networks for regression problems, IEEE transactions on neural networks, vol. 8, no. 3, pp. 630-645, 1995.
[46]J. Yuan and S. Yu, “Privacy preserving back-propagation neural network learning made practical with cloud computing, IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp. 212-221, 2014.
[47]J. M. Zurada, “Introduction to artificial neural systems, St. Paul: West publishing company, 1992.
[48]V. Kecman, “Learning and soft computing: support vector machines, neural networks, and fuzzy logic models, MIT press, 2001.
[49]“Discrete Fourier Transform v3.1, Xilinx Logicore IP, 2011.
[50]“AD5933, Analog Devices, 2005.
[51]B. Buschur, “Evaluate materials with eddy current Journal of Quality, vol. 43, no. 10, pp. 34-37, 2004.
[52]H. Soyama and M. Asahara, “Improvement of the corrosion resistance of a carbon steel surface by a cavitating jet, Journal of materials science letters, vol. 18, no. 23, pp. 1953-1955, 1999.
[53]R. A. Meyers, “Handbook of petroleum refining processes, New York: McGraw-Hill, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊