跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 21:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊秉育
研究生(外文):Ping-YuChuang
論文名稱:具可抑制太陽能模組電流漣波之前饋控制的升壓式直流電能轉換器
論文名稱(外文):Feed-Forward Controlled Boost-Type DC Power Converter for Current Ripple Reduction of PV Module
指導教授:林瑞禮
指導教授(外文):Ray-Lee Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:126
中文關鍵詞:主動濾波器升壓式直流轉換器前饋控制光伏太陽能模組漣波抑制
外文關鍵詞:Active FilterBoost-TypeDC-DC ConverterFeedforward ControlPhotovoltaicPV moduleRipple Reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一具可抑制太陽能模組電流漣波之前饋控制的升壓式直流電能轉換器。60Hz單相SPWM變頻器將直流側電壓轉換成交流電壓輸出,其所反饋至直流端的120Hz脈衝電流會造成太陽能模組的輸出電流與電壓漣波,造成太陽能模組內阻功耗,減短太陽能模組壽命。為了抑制此由變頻器反饋的漣波電流,一般需採用大電解電容來濾波。而本論文電路採用前饋機制來抑制變頻器的反饋電流,以降低太陽能模組內阻功耗。
此外,本論文所提電路的直流升壓轉換比,可將太陽能模組端直流電壓升壓,提高後級變頻器的調變係數(Modulation Index),以便使用低壓太陽能模組。
最後,將實作一具85W雛型電路,進行系統總成測試,驗證本論文電路分別以戴維寧等效電路電源及太陽能模組電源供電下,於不同脈衝電流負載時,電源端可抑制電流漣波與電壓漣波的能力。
This thesis presents a boost-type DC-DC converter with feed-forward control mechanism to suppress the current ripple of PV modules. The AC output voltage is converted from the DC-link voltage by a 60Hz single-phase inverter. The 120Hz pulsating-current load at DC-side causes the PV current and voltage ripples, which lead to the power losses and reduce the lifetime of PV modules. In general, bulky capacitors are employed to suppress the PV current ripple. This thesis proposes a feed-forward control mechanism to suppress the PV current ripple for less internal power loss on PV modules.
Furthermore, the step-up voltage conversion ratio of the proposed boost-type DC-DC converter provides a high modulation index for the 60Hz single-phase inverter.
Finally, an 85W prototype circuit of the proposed boost-type DC-DC converter is designed and implemented to verify the suppression capability on the PV current and voltage ripples with a Thevenin-type and a PV emulator source, respectively.
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Motivation 8
1.3. Thesis Outline 9
CHAPTER 2 PROPOSED 5-PARAMETER APPROACH FOR I-V CURVES OF PV MODULES 10
2.1. Introduction 10
2.2. Characterizations of PV Modules 11
2.3. Proposed 5-Parameter Method 13
2.4. Verification of Characterized PV I-V Curves 16
2.5. Power Loss Calculation of PV Modules 21
2.6. Summary 24
CHAPTER 3 PROPOSED BOOST-TYPE DC-DC CONVERTER 25
3.1. Introduction 25
3.2. Operational Principle 25
3.2.1. Inductor Current 28
3.2.2. Voltage Conversion Ratio 29
3.2.3. DC-link Capacitor Voltage 30
3.2.4. Optimal Design of Charge-pump Capacitance 31
3.3. Open-loop System Analysis 32
3.3.1. PV Voltage-to-BUS Voltage 33
3.3.2. Control-to-BUS Voltage 35
3.3.3. Inverter Current-to-PV Current 39
3.4. Closed-loop System Analysis 45
3.4.1. Compensator Design 47
3.4.2. PV Voltage-to-BUS Voltage Transfer Function 50
3.4.3. Inverter Current-to PV Current 51
3.5. Feedforward Control System Analysis 53
3.5.1. PV Voltage-to-BUS Voltage 53
3.5.2 Inverter Current-to-PV Current 55
3.6. Summary 56
CHAPTER 4 IMPLEMENTATION AND EXPERIMENTAL RESULTS 57
4.1. Introduction 57
4.2. Implementation of Prototype Circuit 57
4.2.1. Inductance 58
4.2.2. Charge-pump Capacitance 59
4.3. Experimental Results at Different Input Sources 61
4.3.1. Thevenin-Type DC Voltage Source 61
4.3.1.1. Proposed Boost-type DC-DC Converter with Different Control Mechanisms 61
4.3.1.2. Conventional boost converter with Different Control Mechanisms 68
4.3.1.3. Conventional Boost Convert with C1 on PV Module with Different Control Mechanisms 75
4.3.2. PV Emulator Source 82
4.3.2.1. Proposed Converter with Different Control Mechanisms 82
4.3.2.2. Conventional boost converter with Different Control Mechanism 93
4.3.2.3. Conventional boost converter with C1 on PV Module with Different Control Mechanisms 104
4.3.2.4. Internal Power Loss of PV Module 114
4.4. Summary 115
CHAPTER 5 CONCLUSIONS 116
REFFERENCES 117
APPENDIX A1 120
APPENDIX A2 121
APPENDIX A3 122
APPENDIX B1 123
APPENDIX B2 124
APPENDIX B3 125
[1]H. Hu, S. Harb, N. Kutkut, I. Batarseh and Z. J. Shen, A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems, in IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2711-2726, June 2013.
[2]Y. Tang, F. Blaabjerg, P. C. Loh, C. Jin and P. Wang, Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit, in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1855-1865, April 2015.
[3]C. Zhao et al., Design and Implementation of a GaN-Based, 100-kHz, 102-W/in3 Single-Phase Inverter, in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 824-840, Sept. 2016.
[4]S. Qin and R. C. N. Pilawa-Podgurski, A power density optimization method for a power pulsation decoupling buffer in single-phase DC-AC converters, 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-8.
[5]H. Wang, H. S. H. Chung and W. Liu, Use of a Series Voltage Compensator for Reduction of the DC-Link Capacitance in a Capacitor-Supported System, in IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1163-1175, March 2014.
[6]Y. Mahmoud, W. Xiao and H. H. Zeineldin, A Simple Approach to Modeling and Simulation of Photovoltaic Modules, in IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 185-186, Jan. 2012.
[7]Darmansyah and I. Robandi, Photovoltaic parameter estimation using Grey Wolf Optimization, 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, 2017, pp. 593-597.
[8]V. Tamrakar, S. C. Gupta and Y. Sawle, Study of characteristics of single and double diode electrical equivalent circuit models of solar PV module, 2015 International Conference on Energy Systems and Applications, Pune, 2015, pp. 312-317.
[9]S. Bal, A. Anurag and B. C. Babu, Comparative analysis of mathematical modeling of Photo-Voltaic (PV) array, 2012 Annual IEEE India Conference (INDICON), Kochi, 2012, pp. 269-274.
[10]ASEC, “Monocrystalline Silicon Photovoltaic Module, ASEC-85G5S Datasheet, 2008.
[11]F. T. Fernandes, L. C. Correa, C. De Nardin, A. Longo and F. A. Farret, Improved analytical solution to obtain the MPP of PV modules, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013, pp. 1674-1678.
[12]M. Patsalides, A. Stavrou, V. Efthymiou and G. E. Georghiou, Thevenin Equivalent Circuit for the Study of High Photovoltaic Penetration in Distribution Grids, 4th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), vol., no., pp. 1-5, 2013.
[13]Z. Batushansky and A. Kuperman, “Thevenin-based approach to PV arrays maximum power prediction, in Proc. 26th IEEE Conv. Electr. Electron. Eng. Israel, 2010, pp. 598–602.
[14]A. Chatterjee and A. Keyhani, “Thevenin’s equivalent of photovoltaic source models for MPPT and power grid studies, in Proc. IEEE Power Energy Soc. Gen. Meet., Jul. 2011, pp. 1–7.
[15]Y. Wang, P. Zhang, W. Li, W. Xiao, and A. Abdollahi, “Online overvoltage prevention control of photovoltaic generators in microgrids, IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 2071–2078, Dec. 2012.
[16]V. Vorperian, Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode, in IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490-496, May 1990.
[17]R. Lin, Modeling and compensator design of LED driver systems, 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, 2017, pp. 1-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊