跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方冠唯
研究生(外文):Guan-WeiFang
論文名稱:使用基於微波開關之雷達系統同時偵測多人多方向生理訊號
論文名稱(外文):RF Switch-Based Radar Systems for Simultaneous Multi-Target and Multi-Direction Vital Sign Detection
指導教授:楊慶隆楊慶隆引用關係
指導教授(外文):Chin-Lung Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:連續波總體經驗模態分解頻率調變連續波低中頻多人多方向微波開關生理徵象量測
外文關鍵詞:Continuous wave (CW)ensemble empirical mode decomposition (EEMD)frequency modulation continuous wave (FMCW)low-IFmulti-targetmulti-directionRF switchvital signs detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個基於微波開關來同時量測多人及多方向生理訊號之雷達系統。由於連續波雷達不具備距離解析度的能力,因此多人的生理訊號會混雜在一起,進而導致難以進行解調。相對地,頻率調變連續波雷達則具有適當的距離解析度且系統架構簡單的優點。因此,頻率調變連續波雷達具有同時量測多個目標物及距離的能力。

我們使用頻率調變連續波雷達來量測離雷達不同距離的待測者生理訊號。如果把微波開關作為多工器使用的話,我們只需一個收發機即可同時量測多個方向的訊號,而不需使用多個雷達系統。此外,開關還具有混波的功能。因此我們進一步實現同時量測多方向的低中頻雷達系統。

在解調方面,由於心跳訊號易受呼吸訊號諧波的影響。因此,我們使用總體經驗模態分解來萃取呼吸及心跳的本質模態函數。實驗結果顯示,透過此演算法我們能有效改善訊雜比及準確度。而生理訊號的誤差平均小於3%。
This thesis proposes a RF switch-based radar system for multi-target and multi-direction vital signs detection simultaneously. Since continuous wave (CW) radar does not have the ability of range resolution, the signals of multiple reflections are mixed together and the phase information cannot be distinguished. In contrast, frequency modulation continuous wave (FMCW) radar has suitable range resolution and relatively simple system architecture. Therefore, FMCW radar has the capabilities of multi-target monitoring and distance information. We use FMCW radar to detect the vital signs of the two targets in various distance simultaneously. By using RF switch as a multiplexer, we can detect multidirection signal in a transceiver instead of multiple radar system. Moreover, switch has the function of mixing. By proposed RF switch-based radar system, we practice low-IF architecture for multi-direction vital signs detection simultaneously. In terms of demodulation, heart rate (HR) is susceptible to the harmonic of respiratory rate (RR). Therefore, we use ensemble empirical mode decomposition (EEMD) algorithm to extract the intrinsic mode functions of RR and HR. Experiments show that, we can improve signal-to-noise ratio (SNR) and accuracy significantly using this algorithm. And the vital sign errors of multiple targets are below 3% averagely.
圖目錄 v 表目錄 x 第一章 緒論 1
1.1 研究背景 1
1.2 文獻探討 2
1.3 論文架構與貢獻 9
第二章 連續波雷達及頻率調變連續波雷達系統理論分析 11
2.1 連續波雷達系統理論分析 11
2.2 頻率調變連續波雷達系統理論分析 13
2.3 混合頻率調變連續波及連續波雷達系統理論分析 16
第三章 經驗模態分解與總體型經驗模態分解方法 19
3.1 經驗模態分解法 19
3.2 總體經驗模態分解法 23
第四章 使用頻率調變連續波雷達搭配微波開關實現同時量測多人及多方向的生理訊號之理論與量測結果 25
4.1 使用頻率調變連續波雷達量測多人的生理訊號 25
4.1.1 實驗架設 26
4.1.2 數位訊號處理 27
4.2 使用頻率調變連續波雷達搭配微波開關量測等距之雙人訊號 29
4.2.1 系統架構 29
4.2.2 實驗架設及量測結果 36
4.3 使用頻率調變連續波搭配微波開關量測多方向多人之訊號 41
4.3.1 系統架構及實驗架設 42
4.3.2 實驗結果 46
第五章 使用微波開關搭配連續波雷達實現同時量測兩方向之低中頻雷達系統 51
5.1 系統架構及理論推導 51
5.2 模擬 54
5.2.1 Bx1(t)及Bx2(t)沒有互相交越且兩訊號與零也都沒有交越 54
5.2.2 Bx1(t)及Bx2(t)沒有互相交越但其中一個訊號與零交越 59
5.2.3 Bx1(t)及Bx2(t)互相交越但與零都沒有交越 62
5.3 量測結果 65
第六章 結論與未來工作 70
6.1 結論 70
6.2 未來工作 71
參考資料 72
[1] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring, IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
[2] X. Ma, L. Li, S. Ming, X. You, and J. Lin, “Envelope detection for an ADC-Relaxed double-sideband low-IF CW Doppler radar, IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5833–5841, Dec. 2018.
[3] I. Mostafanezhad and O. Boric-Lubecke, “Benefits of coherent low-IF for vital signs monitoring using Doppler radar, IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2481–2487, Oct. 2014.
[4] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture, IEEE Trans. on Instr. and Measurement, vol. 59, no. 6, pp. 1580–1588, June 2010.
[5] H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, and X. Zhu, “Noncontact physiological dynamics detection using low-power digital-IF Doppler radar, IEEE Trans. on Instr. and Measurement, vol. 66, no. 7, pp. 1780–1788, July 2017.
[6] H. Zhao, et al., “A noncontact breathing disorder recognition system using 2.4-GHz digital-IF Doppler radar, IEEE J. Biomed. Health Inform., vol. 23, no. 1, pp. 208– 217, Jan. 2019.
[7] A. Rahman, E. Yavari, V. M. Lubecke and O. Boric-Lubecke, “A low-IF tag-based motion compensation technique for mobile Doppler radar life sign monitoring, IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3034–3041, Oct. 2015.
[8] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar, IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan. 2013.
[9] G. Vinci, S. Lindner, F. Barbon, S. Mann, M. Hofmann, A. Duda, R. Weigel, and A. Koelpin, “Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring, IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2093–2100, May 2013.
[10] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, “Vital signs monitoring using impulse based UWB signal, in 2011 41st European Microwave Conference, 2011, pp. 135–138.
[11] G. Wang, et al., “Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs, IEEE Trans. Microw. Theory Techn., vol. 62, no. 6, pp. 1387–1399, June 2014.
[12] G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-Interferometry radar for indoor precise positioning and versatile life activity monitoring, IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812–2822, Nov. 2014. [13] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, in Microwave Symposium Digest, 2008 IEEE MTT-S International, 2008, pp. 567–570. [14] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems, IEEE Trans. Microw. Theory Techn., vol. 55, no. 5 pp. 1073–1079, May 2007.
[15] C. Gu, R. Li, S. B Jiang and C. Li, “A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston MA, August 2011.
[16] C. Gu, Z. Salmani, H. Zhang, and C. Li, “Antenna array technology for radar respiration measurement in motion-adaptive lung cancer radiotherapy, in Proc. 2012 IEEE Top. Conf. on Biomedical Wireless Tech., Network, and Sensing Syst., pp. 21– 24.
[17] M. Nosrati, S. Shahsavari, and N. Tavassolian, “Multi-target vital-signs monitoring using a dual-beam hybrid Doppler radar, in 2018 IEEE International Microwave Biomedical Conference (IMBioC).
[18] C.-Y. Hsu, C.-Y. Chuang, F.-K. Wang, T.-S. Horng, and L.-T. Hwang, “Detection of vital signs for multiple subjects by using self-injection locked radar and mutually injection-locked beam scanning array, in 2017 IEEE MTT-S International Microwave Symposium (IMS).
[19] M. He, Y. Nian, and Y. Gong, “Novel signal processing method for vital sign monitoring using FMCW radar, Biomedical Signal Processing and Control, vol. 33, pp. 335–345, 2017.
[20] A. Singh and V. Lubecke, “Adaptive noise cancellation for two frequency radar using frequency doubling passive RF tags, IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2975–2981, Aug. 2013.
[21] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering butler matrix for phased array system, IEEE Trans. Ant. Prop., vol. 58, no. 2, pp. 367–374, Feb. 2010.
[22] H. R. Chuang, H. C. Kuo, F. L. Lin, T. H. Huang, C. S. Kuo, and Y. W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring, IEEE Sens. J., vol. 12, no. 3, pp. 602–609, Mar. 2012.
[23] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection, IEEE Trans. Microw. Theory and Tech., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[24] M. C. Tang, F. K. Wang, and T. S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation, IEEE Trans. Microw. Theory and Tech., vol. 65, no. 12, pp. 5324–5333, Dec. 2017.
[25] A. Singh and V. M. Lubecke, “Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags, IEEE Sens. J., vol. 12, no. 3, pp. 558–565, Mar. 2012.
[26] A. D. Droitcour, O. B. Lubecke, et al., “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring, IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[27] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1998, pp. 903–995.
[28] I. Mostafanezhad, E. Yavari, O. Boric-Lubecke, V. Lubecke, and D. Mandic, “Cancellation of unwanted Doppler radar sensor motion using empirical mode decomposition, IEEE Sensors Journal, vol. 13, no. 5, pp. 1897–1904, May 2013.
[29] 吳東霖,“應用 EMD 自身呼吸消除技術以提升混合 FMCW-CW 雷達架構之心 跳生理訊號準確度研究,碩士論文,電機工程研究所,國立成功大學,民國 106 年
[30] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv. Adapt. Data Anal., vol. 01, no. 01, pp. 1–41, Jan. 2009. [31] SPDT RF Switch CSWA2-63DR+ [Data Sheet]. Available: https://ww3.minicircuits.com/pdfs/CSWA2-63DR+.pdf
[32] Z. Peng, J. M. Muñoz-Ferreras, Y. Tang, C. Liu, R. Gómez-García, L. Ran, and C. Li, “A portable FMCW interferometry radar with programmable low-IF architecture for localization, ISAR imaging, and vital sign tracking, IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 4, pp. 1334–1344, April 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top