[1] Y. W. Tang, C. C. Tai, C. C. Su, C. Y. Chen, and J. F. Chen, “A correlated empirical mode decomposition method for partial discharge signal denoising Measurement Science and Technology, Vol. 21, No. 8, 2010.
[2] C. C. Su, C.C. Tai , C. Y. Chena , and J. C. Hsieha, “Partial discharge precise source location using acoustic emission method for a waveguide functional high-voltage cast-resin dry-type transformer International Journal of Applied Science and Engineering, Vol. 6, No. 3, pp. 229-237, 2009.
[3] 吳婉容,「Elman 動態類神經應用於模鑄式比壓器老化狀態監測系統之評估」國立成功大學電機工程學系碩士論文,2018。[4] M. X. Zhu, J. N. Zhang, Y. Li, Y. H. Wei, J. Y. Xue, J. B. Deng, H. B. Mu, G. J. Zhang, and X. J. Shao, “ Partial Discharge Signals Separation Using Cumulative Energy Function and Mathematical Morphology Gradient IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 1, pp. 482-493, 2016.
[5] K. Wang, J. Li, S. Zhang, R. Liao, F. Wu, L. Yang, J. Li, and J. Yan, “A Hybrid Algorithm Based on S Transform and Affinity Propagation Clustering for Separation of Two Simultaneously Artificial Partial Discharge Sources IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 2, pp. 1042-1060, 2015.
[6]L. Hao, P. L. Lewin, J. A. Hunter, D. J. Swaffield, A. Contin, C. Walton, and M. Michel, “Discrimination of Multiple PD Sources Using Wavelet Decomposition and Principal Component Analysis IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 5, pp. 1702-1711, 2011.
[7] S. W. Kim, J. R. Jung, Y. M. Kim, G. S. Kil, and G. Wang, “New diagnosis method of unknown phase-shifted PD signals for gas insulated switchgears IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 25, No. 1, pp. 102-109, 2018.
[8] D. Dey, B. Chatterjee, S. Chakravorti, and S. Munshi, “Cross-wavelet Transform as a New Paradigm for Feature Extraction from Noisy Partial Discharge Pulses IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 1, pp. 157-166, 2010.
[9] R. Hussein, K. B. Shaban, and A. H. El-Hag, “Robust Feature Extraction and Classification of Acoustic Partial Discharge Signals Corrupted With Noise IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 66, No. 3, pp. 405-413, 2017.
[10] F. Álvarez, J. Ortego, F. Garnacho, and M. A. Sánchez-Urán, “A Clustering Technique for Partial Discharge and Noise Sources Identification in Power Cables by Means of Waveform Parameters IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 1, pp. 469-481, 2016.
[11] R. Rostaminia, M. Saniei, M. Vakilian, S. S. Mortazavi, and V. Parvin, “Accurate power transformer PD pattern recognition via its model IET Science, Measurement & Technology, Vol. 10, No. 7, pp. 745-753, 2016.
[12] S. Zhang, C. Li , K. Wang, and J. Li, “Improving Recognition Accuracy of Partial Discharge Patterns by Image-Oriented Feature Extraction and Selection Technique IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 2, pp. 1076-1087, 2016.
[13] K. Firuzi, M. Vakilian, V. P. Darabad, B.T. Phung, and T. R. Blackburn, “A Novel Method for Differentiating and Clustering Multiple Partial Discharge Sources using S Transform and Bag of Words Feature IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, No. 6, pp. 3694-3702, 2017.
[14] L. Hao, and P. L. Lewin, “Partial Discharge Source Discrimination using a Support Vector Machine IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 1, pp. 189-197, 2010.
[15] M. Majidi, M. S. Fadali, M. Etezadi-Amoli, and M. Oskuoee, “Partial Discharge Pattern Recognition via Sparse Representation and ANN IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 2, pp. 1061-1070, 2015.
[16] Y. Zhu, Y. Jia, and L. Wang, “Partial discharge pattern recognition method based on variable predictive model-based class discriminate and partial least squares regression IET Science, Measurement & Technology, Vol. 10, No. 7, pp. 737-744, 2016.
[17] T. Boczar, A. Cichoń, D. Wotzka, M. Kunicki, and M. Kozioł, “Indicator Analysis of Partial Discharges Measured Using Various Methods in Paper-Oil Insulation IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, No. 1, pp. 120-128, 2017.
[18] A. Eigner and K. Rethmeier, “An Overview on the Current Status of Partial Discharge Measurements on AC High Voltage Cable Accessories, IEEE Electrical Insulation Magazine, Vol. 32, No. 2, pp. 48-55, 2016.
[19] “High Voltage Test Techniques - Partial Discharge Measurement, IEC 60270, 2000.
[20] D. A. Nattrass, “Partial Discharge Measurement and Interpretation IEEE Electrical Insulation Magazine, Vol. 4, No. 3, pp.10–23, 1988.
[21] B. B. Mandelbrot, “The fractal geometry of nature New York: WH freeman, Vol. 1, 1982
[22] 蘇致遠,「音樂及DNA序列之多重碎形分析」,國立台灣大學機械工程學系博士論文,2004。[23] Z. Shuqing, H. Yuzhu, Z. Jinmin, and Z. Yuchun, “Multi-fractal Based Fault Diagnosis Method of Rotating Machinery Applied Mechanics and Materials, Vol. 130, pp. 571-574, 2012.
[24] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides Physical review e, Vol. 49, No. 2, pp. 1685-1689, 1994.
[25] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. E. Stanley, “Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series Physica A: Statistical Mechanics and its Applications, Vol. 316, No. 1-4, pp. 87-114, 2002.
[26] H. Liu, J. Jing, and J. Ma, “Fault Diagnosis of Electromechanical Actuator Based on VMD Multifractal Detrended Fluctuation Analysis and PNN Complexity, 2018.
[27] L. Telesca and M. Lovallo, “Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher–Shannon information plane Statistical Mechanics: Theory and Experiment, 2011.
[28] Z. Wang, Y. Zhang, J. Guo, and L. Su, “Application of multifractal detrended fluctuation analysis in fault diagnosis for a railway track circuit HKIE Transactions, Vol. 25, No. 1, pp. 44-55, 2018.
[29] S. Chatterjee, S. Pratiher, and R. Bose, “Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals IET Science, Measurement & Technology, Vol. 11, No. 8, pp. 1014-1021, 2017.
[30] K. Liu, X. Zhang, and Y. Q. Chen, “Extraction of Coal and Gangue Geometric Features with Multifractal Detrending Fluctuation Analysis Applied Sciences, Vol. 8 No. 3, 2018.
[31] S. Cekli, C. P. Uzunoglu, and M. Ugur, “Monofractal and Multifractal Analysis of Discharge Signals in Transformer Pressboards Advances in Electrical and Computer Engineering, Vol. 18, No. 2, pp. 69-76, 2018.
[32] J. Tang, D. Wang, L. Fan, R. Zhuo, and X. Zhang, “Feature Parameters Extraction of GIS Partial Discharge Signal with Multifractal Detrended Fluctuation Analysis IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 5, pp. 3037-3045, 2015.
[33] M. Sugiyama, “Introduction to statistical machine learning Morgan Kaufmann, 2015.
[34] M. Fauvel, C. Dechesne, A. Zullo, and F. Ferraty, “Fast forward feature selection of hyperspectral images for classification with Gaussian mixture models IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 6, pp. 2824-2831, 2015.
[35] J. Du and Q. Huo, “An improved VTS feature compensation using Mixture Models of distortion and IVN training for noisy speech recognition IEEE/ACM Transactions on Audio, Speech and Language Processing, Vol. 22, No. 11, pp. 1601-1611, 2014.
[36] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete data via the EM Algorithm Journal of the royal statistical society. Series B (methodological), Vol. 39, No. 1, pp. 1-38, 1997.
[37] J. O. Berger, “Statistical decision theory and Bayesian analysis ,Springer Science & Business Media, 2013.
[38] B. H. Juang, W. Chou, and C. H. Lee, “Minimum classification error rate methods for speech recognition IEEE Transactions on Speech and Audio processing, Vol. 5, No. 3, pp. 257-265, 1997.
[39] E. A. F. Ihlen, “Introduction to multifractal detrended fluctuation analysis in MATLAB Frontiers in Physiology, Vol. 3, No. 141, pp. 1-18, 2012.
[40] J. Bl¨omer and K. Bujna, “Adaptive seeding for Gaussian mixture models Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 296-308, 2016.
[41] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007.
[42]P. Toivanen, “Bayesian Classification Using Gaussian Mixture Model and EM Estimation: Implementations and Comparisons Information Technology Project, 2004.
[43]T. Caliński and J. Harabasz, “A dendrite method for cluster analysis Commun. Stat. Methods, Vol. 3, No. 1, pp. 1–27, 1974.