跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉興
研究生(外文):Jia-SingWang
論文名稱:基於多重碎形去趨勢波動分析暨高斯混合模型之局部放電智慧監測系統
論文名稱(外文):Partial Discharge Intelligent Monitoring System Based on Multifractal Detrended Fluctuation Analysis and Gaussian Mixture Model
指導教授:戴政祺
指導教授(外文):Cheng-Chi Tai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:多重碎形去趨勢波動分析高斯混合模型局部放電K-means++貝氏決策理論
外文關鍵詞:Multifractal detrended fluctuation analysisGaussian Mixture ModelPartial DischargeK-means++Bayesian decision theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要應用多重碎形去趨勢波動分析結合高斯混合模型對電力設備之局部放電類型進行識別,並以實際量測訊號驗證之。為建構一套局部放電智慧監測系統,將整體架構分為三個部分:即時檢測系統、通訊連結、遠端監控系統。首先即時檢測系統利用高頻比流器(HFCT)感測電力設備接地線上的電流脈衝訊號,以高速資料擷取卡(DAQ,NI PXI-5105)進行資料擷取並傳輸到高頻寬嵌入式控制器(NI PXIe-8135),將量測訊號作多重碎形去趨勢波動分析的特徵提取,再根據IEC 61850的通訊協定將特徵參數傳送至遠端監控系統。遠端監控系統則同時從資料庫中讀取訓練資料來建構類別模型,即為高斯混合模型,其中該模型透過K-means++演算法優化初始參數使系統達到更穩定的效果,最後利用貝氏決策理論對即時接收之測試資料進行判讀處理。本研究將所有分析方法及演算法設計於LabVIEW人機介面上進行實測,並以PD校正器(Calibrator)及局部放電實驗驗證本系統之可行性。
In this study, the multifractal detrended fluctuation analysis combined with the Gaussian mixture model is used to identify the partial discharge type of the power equipment, and to verify by the actual measurement signal. In order to construct a partial discharge intelligent monitoring system, the overall structure is divided into three parts: real-time detection system, communication link, and remote monitoring system. First, the real-time detection system uses the high-frequency current transformer to detect the current pulse signal on the ground line of the power equipment, and uses the NI PXI-5105 for data acquisition and transmission to the high-bandwidth embedded controller NI PXIe-8135. Then, feature parameters of the actual measurement signal are extracted by the multifractal detrended fluctuation analysis and is transmitted to the remote monitoring system using the protocol of IEC 61850. The remote monitoring system simultaneously reads the training data from the database to construct the category model, which is the Gaussian mixture model. The model optimizes the initial parameters through the K-means++ algorithm to make the system have more stable effects. Finally, the Bayesian decision theory is used to identify the measurement data received. In this study, all analytical methods and algorithms were designed on the human-machine interface of LabVIEW for measurement, and the feasibility of the system was verified by PD calibrator and partial discharge experiments.
摘 要 III
EXTENDED ABSTRACT IV
誌謝 XIV
目 錄 XV
表目錄 XVIII
圖目錄 XIX
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究動機與目的 4
1.4 論文大綱 5
第二章 局部放電原理與相關理論概述 6
2.1局部放電原理與類型 6
2.1.1 局部放電的相關名詞 6
2.1.2 局部放電的類型 7
2.2 訊號特徵擷取方法 9
2.2.1 碎形的概念 9
2.2.2 多重碎形去趨勢波動分析概述 10
2.2.3 多重碎形譜介紹 11
2.3高斯混合模型原理 13
2.3.1 模型的概念 14
2.3.2 參數估計 15
2.4 貝氏決策理論 15
第三章 智慧監測系統程式設計 19
3.1 系統程式流程 19
3.2 多重碎形去趨勢波動分析探討 20
3.2.1 分析步驟的說明 20
3.2.2 分析參數的選擇 30
3.3 多重碎形譜之特徵參數 31
3.4 高斯混合模型程式架構 35
3.4.1 模型參數初始化 36
3.4.2 期望最大演算法 38
3.4.3 模型整體流程 39
3.5 資料識別機制 43
第四章 系統架構與實測結果討論 46
4.1 系統整體架構 46
4.1.1 硬體設備 47
4.1.2 軟體設計 49
4.2 局部放電訊號特徵擷取 54
4.3 局部放電識別結果與討論 66
4.3.1 訓練階段 67
4.3.2 監測階段 71
4.4發電廠實測分析結果與討論 74
第五章 結論與未來展望 79
5.1結論 79
5.2未來展望 80
參考文獻 81
[1] Y. W. Tang, C. C. Tai, C. C. Su, C. Y. Chen, and J. F. Chen, “A correlated empirical mode decomposition method for partial discharge signal denoising Measurement Science and Technology, Vol. 21, No. 8, 2010.
[2] C. C. Su, C.C. Tai , C. Y. Chena , and J. C. Hsieha, “Partial discharge precise source location using acoustic emission method for a waveguide functional high-voltage cast-resin dry-type transformer International Journal of Applied Science and Engineering, Vol. 6, No. 3, pp. 229-237, 2009.
[3] 吳婉容,「Elman 動態類神經應用於模鑄式比壓器老化狀態監測系統之評估」國立成功大學電機工程學系碩士論文,2018。
[4] M. X. Zhu, J. N. Zhang, Y. Li, Y. H. Wei, J. Y. Xue, J. B. Deng, H. B. Mu, G. J. Zhang, and X. J. Shao, “ Partial Discharge Signals Separation Using Cumulative Energy Function and Mathematical Morphology Gradient IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 1, pp. 482-493, 2016.
[5] K. Wang, J. Li, S. Zhang, R. Liao, F. Wu, L. Yang, J. Li, and J. Yan, “A Hybrid Algorithm Based on S Transform and Affinity Propagation Clustering for Separation of Two Simultaneously Artificial Partial Discharge Sources IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 2, pp. 1042-1060, 2015.
[6]L. Hao, P. L. Lewin, J. A. Hunter, D. J. Swaffield, A. Contin, C. Walton, and M. Michel, “Discrimination of Multiple PD Sources Using Wavelet Decomposition and Principal Component Analysis IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 5, pp. 1702-1711, 2011.
[7] S. W. Kim, J. R. Jung, Y. M. Kim, G. S. Kil, and G. Wang, “New diagnosis method of unknown phase-shifted PD signals for gas insulated switchgears IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 25, No. 1, pp. 102-109, 2018.
[8] D. Dey, B. Chatterjee, S. Chakravorti, and S. Munshi, “Cross-wavelet Transform as a New Paradigm for Feature Extraction from Noisy Partial Discharge Pulses IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 1, pp. 157-166, 2010.
[9] R. Hussein, K. B. Shaban, and A. H. El-Hag, “Robust Feature Extraction and Classification of Acoustic Partial Discharge Signals Corrupted With Noise IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 66, No. 3, pp. 405-413, 2017.
[10] F. Álvarez, J. Ortego, F. Garnacho, and M. A. Sánchez-Urán, “A Clustering Technique for Partial Discharge and Noise Sources Identification in Power Cables by Means of Waveform Parameters IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 1, pp. 469-481, 2016.
[11] R. Rostaminia, M. Saniei, M. Vakilian, S. S. Mortazavi, and V. Parvin, “Accurate power transformer PD pattern recognition via its model IET Science, Measurement & Technology, Vol. 10, No. 7, pp. 745-753, 2016.
[12] S. Zhang, C. Li , K. Wang, and J. Li, “Improving Recognition Accuracy of Partial Discharge Patterns by Image-Oriented Feature Extraction and Selection Technique IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 2, pp. 1076-1087, 2016.
[13] K. Firuzi, M. Vakilian, V. P. Darabad, B.T. Phung, and T. R. Blackburn, “A Novel Method for Differentiating and Clustering Multiple Partial Discharge Sources using S Transform and Bag of Words Feature IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, No. 6, pp. 3694-3702, 2017.
[14] L. Hao, and P. L. Lewin, “Partial Discharge Source Discrimination using a Support Vector Machine IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 1, pp. 189-197, 2010.
[15] M. Majidi, M. S. Fadali, M. Etezadi-Amoli, and M. Oskuoee, “Partial Discharge Pattern Recognition via Sparse Representation and ANN IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 2, pp. 1061-1070, 2015.
[16] Y. Zhu, Y. Jia, and L. Wang, “Partial discharge pattern recognition method based on variable predictive model-based class discriminate and partial least squares regression IET Science, Measurement & Technology, Vol. 10, No. 7, pp. 737-744, 2016.
[17] T. Boczar, A. Cichoń, D. Wotzka, M. Kunicki, and M. Kozioł, “Indicator Analysis of Partial Discharges Measured Using Various Methods in Paper-Oil Insulation IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, No. 1, pp. 120-128, 2017.
[18] A. Eigner and K. Rethmeier, “An Overview on the Current Status of Partial Discharge Measurements on AC High Voltage Cable Accessories, IEEE Electrical Insulation Magazine, Vol. 32, No. 2, pp. 48-55, 2016.
[19] “High Voltage Test Techniques - Partial Discharge Measurement, IEC 60270, 2000.
[20] D. A. Nattrass, “Partial Discharge Measurement and Interpretation IEEE Electrical Insulation Magazine, Vol. 4, No. 3, pp.10–23, 1988.
[21] B. B. Mandelbrot, “The fractal geometry of nature New York: WH freeman, Vol. 1, 1982
[22] 蘇致遠,「音樂及DNA序列之多重碎形分析」,國立台灣大學機械工程學系博士論文,2004。
[23] Z. Shuqing, H. Yuzhu, Z. Jinmin, and Z. Yuchun, “Multi-fractal Based Fault Diagnosis Method of Rotating Machinery Applied Mechanics and Materials, Vol. 130, pp. 571-574, 2012.
[24] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides Physical review e, Vol. 49, No. 2, pp. 1685-1689, 1994.
[25] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. E. Stanley, “Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series Physica A: Statistical Mechanics and its Applications, Vol. 316, No. 1-4, pp. 87-114, 2002.
[26] H. Liu, J. Jing, and J. Ma, “Fault Diagnosis of Electromechanical Actuator Based on VMD Multifractal Detrended Fluctuation Analysis and PNN Complexity, 2018.
[27] L. Telesca and M. Lovallo, “Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher–Shannon information plane Statistical Mechanics: Theory and Experiment, 2011.
[28] Z. Wang, Y. Zhang, J. Guo, and L. Su, “Application of multifractal detrended fluctuation analysis in fault diagnosis for a railway track circuit HKIE Transactions, Vol. 25, No. 1, pp. 44-55, 2018.
[29] S. Chatterjee, S. Pratiher, and R. Bose, “Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals IET Science, Measurement & Technology, Vol. 11, No. 8, pp. 1014-1021, 2017.
[30] K. Liu, X. Zhang, and Y. Q. Chen, “Extraction of Coal and Gangue Geometric Features with Multifractal Detrending Fluctuation Analysis Applied Sciences, Vol. 8 No. 3, 2018.
[31] S. Cekli, C. P. Uzunoglu, and M. Ugur, “Monofractal and Multifractal Analysis of Discharge Signals in Transformer Pressboards Advances in Electrical and Computer Engineering, Vol. 18, No. 2, pp. 69-76, 2018.
[32] J. Tang, D. Wang, L. Fan, R. Zhuo, and X. Zhang, “Feature Parameters Extraction of GIS Partial Discharge Signal with Multifractal Detrended Fluctuation Analysis IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 5, pp. 3037-3045, 2015.
[33] M. Sugiyama, “Introduction to statistical machine learning Morgan Kaufmann, 2015.
[34] M. Fauvel, C. Dechesne, A. Zullo, and F. Ferraty, “Fast forward feature selection of hyperspectral images for classification with Gaussian mixture models IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 6, pp. 2824-2831, 2015.
[35] J. Du and Q. Huo, “An improved VTS feature compensation using Mixture Models of distortion and IVN training for noisy speech recognition IEEE/ACM Transactions on Audio, Speech and Language Processing, Vol. 22, No. 11, pp. 1601-1611, 2014.
[36] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete data via the EM Algorithm Journal of the royal statistical society. Series B (methodological), Vol. 39, No. 1, pp. 1-38, 1997.
[37] J. O. Berger, “Statistical decision theory and Bayesian analysis ,Springer Science & Business Media, 2013.
[38] B. H. Juang, W. Chou, and C. H. Lee, “Minimum classification error rate methods for speech recognition IEEE Transactions on Speech and Audio processing, Vol. 5, No. 3, pp. 257-265, 1997.
[39] E. A. F. Ihlen, “Introduction to multifractal detrended fluctuation analysis in MATLAB Frontiers in Physiology, Vol. 3, No. 141, pp. 1-18, 2012.
[40] J. Bl¨omer and K. Bujna, “Adaptive seeding for Gaussian mixture models Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 296-308, 2016.
[41] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007.
[42]P. Toivanen, “Bayesian Classification Using Gaussian Mixture Model and EM Estimation: Implementations and Comparisons Information Technology Project, 2004.
[43]T. Caliński and J. Harabasz, “A dendrite method for cluster analysis Commun. Stat. Methods, Vol. 3, No. 1, pp. 1–27, 1974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top