|
[1] C. A. Lundgren, K. Xu, T. R. Jow, J. Allen, S. S. Zhang, Springer Handbook of Electrochemical Energy. Berlin Heidelberg: Springer-Verlag, 2017, ch. 15. [2] ROHM Semiconductor. (2009). Ambient Light Sensor (ALS) Applications in Portable Electronics, White Paper. [Online]. Available: https://www.rohm.com/ documents/11308/12928/CNA09016_wp.pdf [3] OSRAM Opto Semiconductor, “Ambient Light Sensor for OLED, Application Note. [Online]. Available: http://catalog.osramos.com/media/_en/ Graphics/00039412_0.pdf [4] Analog Devices. (2008). ADP5501-Programmable Current Backlight Driver with Ambient Light Sensor Input, ADP5501 Datasheet. [Online]. Available: http://www. analog.com/static/imported-files/data_sheets/ADP5501.pdf [5] T. Instruments. (2014). LM3530-High Efficiency White LED Driver with Programmable Ambient Light Sensing Capability and I2C-Compatible Interface, LM3530 Datasheet. [Online]. Available: www.ti.com/lit/ds/symlink/lm3530.pdf [6] Broadcom. (2007). APDS9005-Miniature Surface-Mount Ambient Light Photo Sensor, APDS9005 Datasheet. [Online]. Available: https://docs.broadcom.com/docs/AV02-0080EN [7] B. Sahu and G. A. Rincón-Mora, “A low voltage, dynamic, noninverting, synchronous buck–boost converter for portable applications, IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443–452, Mar. 2004. [8] P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani, and A. Baschirotto, “A 0.18-μm CMOS, 91%-efficiency, 2-A scalable buck-boost dc–dc converter for LED drivers, IEEE Trans. Power Electron., vol. 29, no.10, pp. 5392–5398, Oct. 2014. [9] B. Sahu and G. A. Rincón-Mora, “A high-efficiency, dual-mode, dynamic, buck–boost power supply IC for portable applications, in Proc. IEEE 18th Int. Conf. VLSI Design, 2005, pp. 858–861. [10] B. H. Hwang, B. N. Shecen, J. J. Chen, Y. S. Hwang, and C. C. Yu, “A low-voltage positive buck–boost converter using average-current-controlled techniques, in Proc. IEEE Int. Symposium on Cir. and Syst., 2012, pp. 2255–2258. [11] J. J. Chen, P. N. Shen, and Y. S. Hwang, “A high efficiency positive buck–boost converter with mode-select circuit and feed-forward techniques, IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4240–4247, Sep. 2013. [12] C. L. Wei, C. H. Chen, K. C. Wu, and I. T. Ko, “Design of an average-current-mode noninverting buck–boost dc–dc converter with reduced switching and conduction losses, IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4934–4943, Dec. 2012. [13] M. Lin, Y. S. Huang, A. Ehrhart, Y. H. Lee, C. C. Chiu, B. Wicht, and K. H. Chen, “Authentic mode-toggled detector with fast transient response under wide load range buck–boost converter. in Proc. IEEE Int. Symposium on Circuits and Syst., 2013, pp. 2952–2955. [14] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter, IEEE Trans. Power Electron., vol. 25, no. 3, pp. 719–730, Mar. 2010. [15] P. Midya, K. Haddad, and M. Miller, “Buck or boost tracking power converter, IEEE Power Electron. Lett., vol. 2, no 4, pp. 131–134, Dec. 2004. [16] R. Redl and J. Sun, “Ripple-based control of switching regulators–an overview, IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009. [17] F. Su and W. H. Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor, in Proc. IEEE Int. Solid-State Circuits Conf., 2009, pp. 446–447. [18] J. C. Tsai, C. L. Chen, Y. H. Lee, H. Y. Yang, M. S. Hsu, and K. H. Chen, “Modified hysteretic current control (MHCC) for improving transient response of boost converter, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1967–1979, Aug. 2011. [19] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor, IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829–838, Apr. 2010. [20] C. S. Huang, C. Y. Wang, J. H. Wang, and C. H. Tsai, “A fast-transient quasi-V2 switching buck regulator using AOT control, in Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 53–56. [21] J. S. Guo, S. M. Lin, and C. H. Tsai, “A hysteretic boost regulator with emulated-ramp feedback (ERF) current-sensing technique for LED driving applications, in Proc. IEEE Asian Solid-State Circuits Conf., 2013, pp. 61–64. [22] F. Su, W. H. Ki, and C. Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications, IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008. [23] C. Yao, X. Ruan, W. Cao, and P. Chen, “A two-mode control scheme with input voltage feed-forward for the two-switch buck-boost dc–dc converter, IEEE Trans. Power Electron., vol. 29, no. 4, pp. 2037–2048, 2014. [24] R. Paul and D. Maksimovic, “Analysis of PWM nonlinearity in non-inverting buck-boost power converters, in Proc. 2018 IEEE Power Electron. Spec. Conf., 2008, pp. 3741–3747. [25] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter, IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1002–1116, 2009. [26] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-Ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 506-517, Feb. 2010. [27] B. D. Valle, C. T. Wentz, and R. Sarpeshkar, “An area and power-efficient analog Li-Ion battery charger circuit, IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 2, pp. 131-137, Apr. 2011. [28] T.-C. Huang, R.-H. Peng, T.-W. Tsai, K.-H. Chen, and C.-L. Wey, “Fast charging and high efficiency switching-based charger with continuous built-in resistance detection and automatic energy deliver control for portable electronics, IEEE J. Solid-State Circuits, vol. 49, no.7, pp. 1580–1594, Jul. 2014. [29] P. H. V. Quang, T. T. Ha, and J.-W. Lee, “A fully integrated multimode wireless power charger IC with adaptive supply control and built-in resistance compensation, IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 1251–1261, Feb. 2015. [30] K. Chung, S.-K. Hong, , and O.-K. Kwon, “A fast and compact charger for an Li-Ion battery using successive built-in resistance detection, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2, pp. 161-165, Feb. 2017 [31] Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J. Chen, “New compact CMOS Li-Ion battery charger using charge-pump technique for portable applications, IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, no. 4, pp. 705–712, Apr. 2007. [32] J.-J. Chen, F.-C. Yang, C.-C. Lai, Y.-S. Hwang, and R.-G. Lee, “A high-efficiency multimode Li–Ion battery charger with variable current source and controlling previous-stage supply voltage, IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469-2478, Jul. 2009. [33] M. Chen and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li-Ion battery charger circuit, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.53, no. 11, pp. 1180-1184, Nov. 2006. [34] S.-H. Yang, J.-W. Liu, and C.-C. Wang, “A single-chip 60-V bulk charger for series Li-Ion batteries with smooth charge-mode transition, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no.7, pp. 1588-1596, Jul. 2012. [35] R. Pagano, M. Baker, and R. E. Radke, “A 0.18-m monolithic Li-Ion battery charger for wireless devices based on partial current sensing and adaptive reference voltage, IEEE J. Solid-State Circuits, vol. 47, no.6, pp. 1535-1368, Jun. 2012. [36] M.-G. Jeong, S.-H. Kim, and C. Yoo, “Switching battery charger integrated circuit for mobile devices in a 130-nm BCDMOS process, IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7943-7952, Jan. 2016. [37] Y.-C. Kuo, Y.-J. Luo, and L.-J., Liu, “Synthesizable integrated circuit and system design for solar chargers, IEEE Trans. Power Electron., vol. 28, no.9, pp. 4260-4266, Sep. 2013. [38] Y.-C. Kuo, W.-H.Tung, and L.-J. Liu, “Smart integrated circuit and system design for renewable energy harvesters, IEEE J. Photovoltaics., vol. 3, no.1, pp. 401-406, Jan. 2013. [39] V.-L. Tran, H.-N. Vu, D.-D. Tran, and W. Choi, “Design and implementation of a high-efficiency multiple output charger based on the time-division multiple control technique, IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1210-1219, Feb. 2017. [40] P.-J. Liu, and C.-H. Yen, “A fast-charging switching-based charger with adaptive hybrid duty cycle control for multiple batteries, IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1975-1983, Mar. 2017. [41] C. F. Lee and P. K. T. Mok, A monolithic current-mode CMOS dc-dc converter with on-chip current-sensing technique, IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004. [42] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A high current accuracy boost white LED driver based on offset calibration technique, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4, pp. 244-248, Apr. 2011. [43] J.-F. Wu, C.-L. Wei, Y.-T. Hsieh, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “Integrated ambient light sensor on a LED driver chip, in Proc. IEEE Int. Conf. on Power Electron. and Drive Systems (PEDS), 2011, pp. 944–947. [44] W.-H. Ki, “Signal flow graph in loop gain analysis of dc-dc PWM CCM switching converters, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 6, pp. 644-655, Jun. 1998. [45] B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2158-2164, Oct. 2005. [46] H. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS active pixel image sensors fabricated using a 1.8-V, 0.25-m CMOS technology, in Proc. Int. Electron Devices Meeting Tech. Dig., 1996, pp. 915-918. [47] L.-W. Lai, C.-H. Lai, and Y.-C. King, “A novel logarithmic response CMOS image sensor with high output voltage swing and in-pixel fixed-pattern noise reduction, IEEE Sensors J., vol. 4, no. 1, pp. 122-126, Feb. 2004. [48] E. Sackinger, and W. Guggenbuhl, “A versatile building block: the CMOS differential difference amplifier, IEEE J. Solid-State Circuits, vol. 22, no. 2, pp. 287-294, Apr. 1987. [49] X.-E. Hong ; J.-F. Wu ; C.-L. Wei, “98.1%-efficiency hysteretic-current-mode noninverting buck–boost dc-dc converter with smooth mode transition, IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2008-2017, Mar. 2017. [50] S. Rao, Q. Khan, S. Bang, D. Swank, A. Rao, W. McIntyre, and P. K. Hanumolu, “A 1.2A buck-boost LED driver with 13% efficiency improvement using error-averaged sense FET-based current sensing, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 238-240. [51] I. Buchmann, Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers, Richmond, BC, Canada: Cadex Electronics Inc. 2011. [52] T. Instruments. (2016). bq24650-Synchronous Switch-Mode Battery Charge Controller for Solar Power with Maximum Power Point Tracking, bq24650 Datasheet. [Online]. Available: http://www.ti.com/lit/ds/slusa75a/slusa75a.pdf [53] Linear Technology. (2010). LT3652–Power Tracking 2A Battery Charger for Solar Power, LT3652 Datasheet. [Online]. Available: http://cds.linear.com/docs/en/ datasheet/3652fe.pdf [54] STMicroelectronics. (2008). TSM1052–Constant Voltage and Constant Current Controller, TSM1052 Datasheet. [Online]. Available: http://www.st.com/resource/en/ datasheet/tsm1052.pdf [55] STMicroelectronics. (2016). TSM1011–Constant Voltage and Constant Current Controller, TSM1011 Datasheet. [Online]. Available: http://www.st.com/resource/en/datasheet/tsm1011.pdf [56] J.-F. Wu, C.-L. Wei, and Y.-Z Juang, “A monolithic high-voltage Li-ion battery charger with sharp mode transition and partial current control technique. IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 9, pp. 3099-3109, Sep. 2018. [57] B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2158-2164, Oct. 2005. [58] T. Dake and E. Ozalevli, “A precision high-voltage current sensing circuit, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1197–1202, Jun. 2008. [59] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA, USA: Kluwer, 2001 [60] L. Yushan and S. L. Wong., “Low cost half bridge driver integrated circuit with capability of using high threshold voltage DMOS, U.S. Patent 6353345 B1, May 5, 2002.
|