跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳健福
研究生(外文):Jian-FuWu
論文名稱:適用於攜帶式裝置之電源管理晶片設計
論文名稱(外文):Design of the Power Management ICs for Portable Devices
指導教授:魏嘉玲
指導教授(外文):Chia-Ling Wei
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:73
中文關鍵詞:攜帶式裝置發光二極體驅動器升降壓鋰電池充電晶片
外文關鍵詞:Portable DeviceLED Driverbuck-boostLi-ion Battery Charger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
隨著攜帶式裝置快速的發展,如何延長這些裝置的使用時間,並且減少電源轉換電路的體積,已成為很重要的研究課題。在本論文中,針對攜帶式裝置中的電源管理晶片的設計技術做深入研究,改進其轉換效率,並將更多的外部元件整合進晶片中。
在發光二極體(LED)驅動器的部分,環境光感測器及感測電路被整合到一個用於液晶顯示器背光模組的LED驅動器中。透過這個環境光感測器來感測環境亮度,這個LED驅動晶片可以自動的調節其輸出電流,因此LED背光模組的消耗功率可以有效地減低。本論文實現了一個升壓型LED驅動器來驗證這個功能,其輸入電壓為3至5 V,並且可驅動2至15個LED。
在非反向升降壓直流-直流轉換器的部分,我們提出的磁滯電流模式非反向升降壓轉換器,可以改善一般非反向升降壓轉換器中,於升降壓轉換區效率低落的問題。並且在輸入與輸出電壓接近時,平滑的轉換其操作模式。在本論文中,我們實現了一個輸入2.5至5 V,輸出電壓3.3 V,最大負載電流為400 mA的非反向升降壓轉換器,根據量測結果,其最高效率可達98.1%,在整個輸入及負載範圍,效率皆可以保持在80%以上。
在高電壓鋰電池充電晶片部分,本論文提出的快速模式轉換技術,可以消除在一般鋰電池充電電路中,定電壓與定電流轉換所需的轉換區間,這可以減少充電時間,也簡化了補償器的設計。此外,透過部分電流控制技術,無須外接感測電阻,僅須偵測部分週期的電感電流即可達成在定電流模式下的恆流控制。此晶片在25-V電壓輸入下,輸出電壓範圍為6至22 V,其最大充電電流為2.5 A,於1 A充電電流下,可以達到晶片之最高效率97%。
With the rapid development of portable devices, how to extend the usage time of these devices and reduce the volume of the power conversion circuits has become an important research topic. In this dissertation, several power management integrated circuits (ICs) are implemented to improve the efficiency and more external components are integrated.
In the designed light-emitting diode (LED) driver, an ambient light sensor and its readout circuit are integrated in a LED driver for the liquid crystal display (LCD) backlight module. By sensing the surrounding light level, the LED driver can automatically adjusts the LED current, and, hence, the power dissipation of LED backlight module can be effectively reduced. A boost-type LED driver is proposed in this dissertation to verify this function. The input voltage is 3 to 5 V, and it can drive 2 to 15 LEDs.
In the designed noninverting buck-boost dc-dc converter, the proposed hysteretic-current -mode control method can improve the efficiency in the mode transition region, and smoothly switch its operating mode when the input and output voltages are close. The input voltage may range from 2.5 to 5 V, the output voltage is 3.3 V, and the maximum output current is 400 mA. According to the measured results, the maximum frequency reaches 98.1%, and the efficiencies measured in the entire input range and loading range are all above 80%.
In the designed Li-ion battery charger, the proposed sharp mode transition eliminates the transition region between constant current (CC) and constant voltage (CV) stages in traditional Li-ion battery chargers. This technique reduces the charging time and simplifies the compensator design. Furthermore, by adopting the HV partial current control technique, the charging current at the CC stage can be regulated only by sensing part of inductor current, and no external sensing resistor is required. With a 25-V input voltage, the output voltage range of this chip is 6 to 22 V. The maximum charging current is 2.5 A. The peak efficiency reaches 97%, occurring at 1-A charging current.
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 LED Driver with Integrated Ambient Light Sensor 3
1.3 Noninverting Buck-boost Converter 3
1.4 Li-ion Battery Charger 6
1.5 Organization 8
Chapter 2 LED Driver with Integrated Ambient Light Sensor 9
2.1 Circuit Implementation 10
2.1.1 Boost-type LED Driver 10
2.1.2 Ambient Light Sensor (ALS) 11
2.1.3 Readout Circuits of the Built-in ALS 13
2.1.4 Differential Difference Amplifier (DDA) 14
2.2 Experimental Results 15
2.3 Summary 18
Chapter 3 Noninverting Buck-Boost DC-DC Converter 19
3.1 Proposed HCM Control Method 19
3.1.1 Mode Transition Issue 19
3.1.2 Block Diagram and Fundamentals of the Proposed HCM Non-Inverting Buck-Boost Converter 20
3.1.3 Efficiency in the Transition Region 24
3.2 Experimental Results 27
3.3 Summary 34
Chapter 4 Li-ion Battery Charger Design 35
4.1 CC-CV Charging Control Method 36
4.1.1 Commercial CC-CV Transition Method 38
4.1.2 Proposed CC-CV Transition Method 40
4.2 Circuit Implementation 42
4.2.1 HV Inductor Current Sensing Circuit 44
4.2.2 CC Control Loop- Partial Current Control 47
4.2.3 CV Control Loop-Peak Current Control 51
4.2.4 Clock and Sawtooth Waveform Generator 53
4.2.5 Level Shifter 53
4.3 Experimental Results 56
4.4 Summary 62
Chapter 5 Conclusion and Future Work 63
5.1 Conclusion 63
5.2 Future Work 64
References 66
Publications 72
[1] C. A. Lundgren, K. Xu, T. R. Jow, J. Allen, S. S. Zhang, Springer Handbook of Electrochemical Energy. Berlin Heidelberg: Springer-Verlag, 2017, ch. 15.
[2] ROHM Semiconductor. (2009). Ambient Light Sensor (ALS) Applications in Portable Electronics, White Paper. [Online]. Available: https://www.rohm.com/ documents/11308/12928/CNA09016_wp.pdf
[3] OSRAM Opto Semiconductor, “Ambient Light Sensor for OLED, Application Note. [Online]. Available: http://catalog.osramos.com/media/_en/ Graphics/00039412_0.pdf
[4] Analog Devices. (2008). ADP5501-Programmable Current Backlight Driver with Ambient Light Sensor Input, ADP5501 Datasheet. [Online]. Available: http://www. analog.com/static/imported-files/data_sheets/ADP5501.pdf
[5] T. Instruments. (2014). LM3530-High Efficiency White LED Driver with Programmable Ambient Light Sensing Capability and I2C-Compatible Interface, LM3530 Datasheet. [Online]. Available: www.ti.com/lit/ds/symlink/lm3530.pdf
[6] Broadcom. (2007). APDS9005-Miniature Surface-Mount Ambient Light Photo Sensor, APDS9005 Datasheet. [Online]. Available: https://docs.broadcom.com/docs/AV02-0080EN
[7] B. Sahu and G. A. Rincón-Mora, “A low voltage, dynamic, noninverting, synchronous buck–boost converter for portable applications, IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443–452, Mar. 2004.
[8] P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani, and A. Baschirotto, “A 0.18-μm CMOS, 91%-efficiency, 2-A scalable buck-boost dc–dc converter for LED drivers, IEEE Trans. Power Electron., vol. 29, no.10, pp. 5392–5398, Oct. 2014.
[9] B. Sahu and G. A. Rincón-Mora, “A high-efficiency, dual-mode, dynamic, buck–boost power supply IC for portable applications, in Proc. IEEE 18th Int. Conf. VLSI Design, 2005, pp. 858–861.
[10] B. H. Hwang, B. N. Shecen, J. J. Chen, Y. S. Hwang, and C. C. Yu, “A low-voltage positive buck–boost converter using average-current-controlled techniques, in Proc. IEEE Int. Symposium on Cir. and Syst., 2012, pp. 2255–2258.
[11] J. J. Chen, P. N. Shen, and Y. S. Hwang, “A high efficiency positive buck–boost converter with mode-select circuit and feed-forward techniques, IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4240–4247, Sep. 2013.
[12] C. L. Wei, C. H. Chen, K. C. Wu, and I. T. Ko, “Design of an average-current-mode noninverting buck–boost dc–dc converter with reduced switching and conduction losses, IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4934–4943, Dec. 2012.
[13] M. Lin, Y. S. Huang, A. Ehrhart, Y. H. Lee, C. C. Chiu, B. Wicht, and K. H. Chen, “Authentic mode-toggled detector with fast transient response under wide load range buck–boost converter. in Proc. IEEE Int. Symposium on Circuits and Syst., 2013, pp. 2952–2955.
[14] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter, IEEE Trans. Power Electron., vol. 25, no. 3, pp. 719–730, Mar. 2010.
[15] P. Midya, K. Haddad, and M. Miller, “Buck or boost tracking power converter, IEEE Power Electron. Lett., vol. 2, no 4, pp. 131–134, Dec. 2004.
[16] R. Redl and J. Sun, “Ripple-based control of switching regulators–an overview, IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[17] F. Su and W. H. Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor, in Proc. IEEE Int. Solid-State Circuits Conf., 2009, pp. 446–447.
[18] J. C. Tsai, C. L. Chen, Y. H. Lee, H. Y. Yang, M. S. Hsu, and K. H. Chen, “Modified hysteretic current control (MHCC) for improving transient response of boost converter, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1967–1979, Aug. 2011.
[19] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor, IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829–838, Apr. 2010.
[20] C. S. Huang, C. Y. Wang, J. H. Wang, and C. H. Tsai, “A fast-transient quasi-V2 switching buck regulator using AOT control, in Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 53–56.
[21] J. S. Guo, S. M. Lin, and C. H. Tsai, “A hysteretic boost regulator with emulated-ramp feedback (ERF) current-sensing technique for LED driving applications, in Proc. IEEE Asian Solid-State Circuits Conf., 2013, pp. 61–64.
[22] F. Su, W. H. Ki, and C. Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications, IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
[23] C. Yao, X. Ruan, W. Cao, and P. Chen, “A two-mode control scheme with input voltage feed-forward for the two-switch buck-boost dc–dc converter, IEEE Trans. Power Electron., vol. 29, no. 4, pp. 2037–2048, 2014.
[24] R. Paul and D. Maksimovic, “Analysis of PWM nonlinearity in non-inverting buck-boost power converters, in Proc. 2018 IEEE Power Electron. Spec. Conf., 2008, pp. 3741–3747.
[25] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter, IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1002–1116, 2009.
[26] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-Ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 506-517, Feb. 2010.
[27] B. D. Valle, C. T. Wentz, and R. Sarpeshkar, “An area and power-efficient analog Li-Ion battery charger circuit, IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 2, pp. 131-137, Apr. 2011.
[28] T.-C. Huang, R.-H. Peng, T.-W. Tsai, K.-H. Chen, and C.-L. Wey, “Fast charging and high efficiency switching-based charger with continuous built-in resistance detection and automatic energy deliver control for portable electronics, IEEE J. Solid-State Circuits, vol. 49, no.7, pp. 1580–1594, Jul. 2014.
[29] P. H. V. Quang, T. T. Ha, and J.-W. Lee, “A fully integrated multimode wireless power charger IC with adaptive supply control and built-in resistance compensation, IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 1251–1261, Feb. 2015.
[30] K. Chung, S.-K. Hong, , and O.-K. Kwon, “A fast and compact charger for an Li-Ion battery using successive built-in resistance detection, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2, pp. 161-165, Feb. 2017
[31] Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J. Chen, “New compact CMOS Li-Ion battery charger using charge-pump technique for portable applications, IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, no. 4, pp. 705–712, Apr. 2007.
[32] J.-J. Chen, F.-C. Yang, C.-C. Lai, Y.-S. Hwang, and R.-G. Lee, “A high-efficiency multimode Li–Ion battery charger with variable current source and controlling previous-stage supply voltage, IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469-2478, Jul. 2009.
[33] M. Chen and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li-Ion battery charger circuit, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.53, no. 11, pp. 1180-1184, Nov. 2006.
[34] S.-H. Yang, J.-W. Liu, and C.-C. Wang, “A single-chip 60-V bulk charger for series Li-Ion batteries with smooth charge-mode transition, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no.7, pp. 1588-1596, Jul. 2012.
[35] R. Pagano, M. Baker, and R. E. Radke, “A 0.18-m monolithic Li-Ion battery charger for wireless devices based on partial current sensing and adaptive reference voltage, IEEE J. Solid-State Circuits, vol. 47, no.6, pp. 1535-1368, Jun. 2012.
[36] M.-G. Jeong, S.-H. Kim, and C. Yoo, “Switching battery charger integrated circuit for mobile devices in a 130-nm BCDMOS process, IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7943-7952, Jan. 2016.
[37] Y.-C. Kuo, Y.-J. Luo, and L.-J., Liu, “Synthesizable integrated circuit and system design for solar chargers, IEEE Trans. Power Electron., vol. 28, no.9, pp. 4260-4266, Sep. 2013.
[38] Y.-C. Kuo, W.-H.Tung, and L.-J. Liu, “Smart integrated circuit and system design for renewable energy harvesters, IEEE J. Photovoltaics., vol. 3, no.1, pp. 401-406, Jan. 2013.
[39] V.-L. Tran, H.-N. Vu, D.-D. Tran, and W. Choi, “Design and implementation of a high-efficiency multiple output charger based on the time-division multiple control technique, IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1210-1219, Feb. 2017.
[40] P.-J. Liu, and C.-H. Yen, “A fast-charging switching-based charger with adaptive hybrid duty cycle control for multiple batteries, IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1975-1983, Mar. 2017.
[41] C. F. Lee and P. K. T. Mok, A monolithic current-mode CMOS dc-dc converter with on-chip current-sensing technique, IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[42] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A high current accuracy boost white LED driver based on offset calibration technique, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4, pp. 244-248, Apr. 2011.
[43] J.-F. Wu, C.-L. Wei, Y.-T. Hsieh, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “Integrated ambient light sensor on a LED driver chip, in Proc. IEEE Int. Conf. on Power Electron. and Drive Systems (PEDS), 2011, pp. 944–947.
[44] W.-H. Ki, “Signal flow graph in loop gain analysis of dc-dc PWM CCM switching converters, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 6, pp. 644-655, Jun. 1998.
[45] B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2158-2164, Oct. 2005.
[46] H. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS active pixel image sensors fabricated using a 1.8-V, 0.25-m CMOS technology, in Proc. Int. Electron Devices Meeting Tech. Dig., 1996, pp. 915-918.
[47] L.-W. Lai, C.-H. Lai, and Y.-C. King, “A novel logarithmic response CMOS image sensor with high output voltage swing and in-pixel fixed-pattern noise reduction, IEEE Sensors J., vol. 4, no. 1, pp. 122-126, Feb. 2004.
[48] E. Sackinger, and W. Guggenbuhl, “A versatile building block: the CMOS differential difference amplifier, IEEE J. Solid-State Circuits, vol. 22, no. 2, pp. 287-294, Apr. 1987.
[49] X.-E. Hong ; J.-F. Wu ; C.-L. Wei, “98.1%-efficiency hysteretic-current-mode noninverting buck–boost dc-dc converter with smooth mode transition, IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2008-2017, Mar. 2017.
[50] S. Rao, Q. Khan, S. Bang, D. Swank, A. Rao, W. McIntyre, and P. K. Hanumolu, “A 1.2A buck-boost LED driver with 13% efficiency improvement using error-averaged sense FET-based current sensing, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 238-240.
[51] I. Buchmann, Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers, Richmond, BC, Canada: Cadex Electronics Inc. 2011.
[52] T. Instruments. (2016). bq24650-Synchronous Switch-Mode Battery Charge Controller for Solar Power with Maximum Power Point Tracking, bq24650 Datasheet. [Online]. Available: http://www.ti.com/lit/ds/slusa75a/slusa75a.pdf
[53] Linear Technology. (2010). LT3652–Power Tracking 2A Battery Charger for Solar Power, LT3652 Datasheet. [Online]. Available: http://cds.linear.com/docs/en/ datasheet/3652fe.pdf
[54] STMicroelectronics. (2008). TSM1052–Constant Voltage and Constant Current Controller, TSM1052 Datasheet. [Online]. Available: http://www.st.com/resource/en/ datasheet/tsm1052.pdf
[55] STMicroelectronics. (2016). TSM1011–Constant Voltage and Constant Current Controller, TSM1011 Datasheet. [Online]. Available: http://www.st.com/resource/en/datasheet/tsm1011.pdf
[56] J.-F. Wu, C.-L. Wei, and Y.-Z Juang, “A monolithic high-voltage Li-ion battery charger with sharp mode transition and partial current control technique. IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 9, pp. 3099-3109, Sep. 2018.
[57] B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2158-2164, Oct. 2005.
[58] T. Dake and E. Ozalevli, “A precision high-voltage current sensing circuit, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1197–1202, Jun. 2008.
[59] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA, USA: Kluwer, 2001
[60] L. Yushan and S. L. Wong., “Low cost half bridge driver integrated circuit with capability of using high threshold voltage DMOS, U.S. Patent 6353345 B1, May 5, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top