|
[1]Peter Braun, Alfredo Cuzzocrea , Carson K. Leung, Adam G.M. Pazdor, Kimberly Tran, Knowledge Discovery from Social Graph Data, Procedia Computer Science, 2016, vol. 96, pp. 682-691. [2]Shewhart, Walter Andrew. (1931). Economic control of quality of manufactured product. New York: D. Van Nostrand Company. pp. 501 [3]Frederick Taylor, The Principles of Scientific Management (Harper & Brothers, 1911), p. 7 [4]Douglas, Laney. 3D Data Management: Controlling Data Volume, Velocity and Variety Gartner. [2001-02-06]. [5]Express Scripts (Chief Data Officer, CDO)speech in Big Data Innovation Summit[2013] [6]Han, Kamber, Pei, Jaiwei, Micheline, Jian (June 9, 2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann. ISBN 978-0-12-381479-1. [7]Fayyad, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic (1996). From Data Mining to Knowledge Discovery in Databases [8]Berry, M. J. and Linoff, G. (1997). Data Mining Techniques: for Marketing, Sales,and Customer Support. John Wiley and Sons, New York. [9]Stuart J. Russell, Peter Norvig (2010) Artificial Intelligence: A Modern Approach, Third Edition, Prentice Hall ISBN 9780136042594. [10]Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine Learning, The MIT Press ISBN 9780262018258. [11]Hinton, Jeffrey; Sejnowski, Terrence (1999). Unsupervised Learning: Foundations of Neural Computation. MIT Press. ISBN 978-0262581684. [12]Jordan, Michael I.; Bishop, Christopher M. (2004). Neural Networks. In Allen B. Tucker (ed.). Computer Science Handbook, Second Edition (Section VII: Intelligent Systems). Boca Raton, Florida: Chapman & Hall/CRC Press LLC. ISBN 1-58488-360-X. [13]Basic Business Statistics- Mark L. Berenson, David M. Levine, Timothy C. Krehbiel [14] Andrew, D.F., 1974. A robust method for multiple linear regression. Technometrics, 16: 523-551. [15] Rencher, Alvin C.; Christensen, William F., Chapter 10, Multivariate regression – Section 10.1, Introduction, Methods of Multivariate Analysis, Wiley Series in Probability and Statistics 709 3rd, John Wiley & Sons: 19, 2012, ISBN 9781118391679. [16]Hilary L. Seal. The historical development of the Gauss linear model. Biometrika. 1967 [17]Corts, C., Vapnik, V., 1995, Support vector networks. Machine Learning, 20(3): 273-297. [18]Cristianini, N. and Shawe-Taylor, J., 2000, An Introduction to Support Vector Machines and Other Kernel–based Learning Methods, Cambridge University Press. [19] Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS Technical Report, 14. [20] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 1995. [21]Karush W., 1939, Minima of functions of several variables with inequalities as side constraints, Department of Mathematics, University of Chicago. [22]Kuhn H. and Tucker A., 1951, A nonlinear programming in: Proceedings of 2nd Berkeley symposium on mathematical statistics and probabilistic, University of California Press. 481-492. [23]Fletcher, R., 1987, Practical Method of Optimization, John Wiley and Sons. Inc. [24]Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155-161. [25] Vladimir Vapnik , Steven E. Golowich , Alex Smola. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Neural Information Processing Systems Conference, 1997. [26] Alex J. Smola and Bernhand Sch ̈lkopf. A tutorial on support vector regression. Statistics and Computing: Springer, 2003. [27]Muller, K. R., Smola, A. J., Ratsch, G., Scholkopf, B., Kohlmorgen, J., & Vapnik, V. (1999). Using support vector machines for time series prediction. Advances in kernel methods—support vector learning, MIT Press, Cambridge, MA, 243-254. [28]Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks, 17(1), 113-126. [29]Keethi, S. S., Lin, C. J., 2003, Asymptotic behaviors of support vector machine with Gaussian kennel. Neural Computation, 15(7): 1667-1689 [30] Draper, N. R.; Smith, H. Applied Regression Analysis. Wiley-Interscience. 1998. ISBN 0-471-17082-8. [31] Devore, Jay L. Probability and Statistics for Engineering and the Sciences 8th. Boston, MA: Cengage Learning. 2011: 508–510. ISBN 0-538-73352-7. [32]王怡惠(2015)。〈從工業 4.0 看我國生產力 4.0 之挑戰〉,《臺灣經濟研究月刊》,38(8):111-119。 [33].林顯明(2015),中華經濟研究院,各國工業4.0策略與發展:對台灣的機會與挑戰,國立中山大學政治學研究所,取自: http://web.wtocenter.org.tw/Mobile/page.aspx?pid=267863&nid=126。 [34]簡禎富、林國義、許鉅秉與吳政鴻(2016),「回顧與前瞻: 從工業 3.0 到工業 3.5」,管理學報,第 33 卷,第 1 期, 頁 87-103,台北,台灣
|