跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮文凱
研究生(外文):Wen-KaiFeng
論文名稱:採用線間功率潮流控制器於抑制混合蒸氣渦輪機與離岸風渦輪發電系統之次同步共振
論文名稱(外文):Suppression of Subsynchronous Resonance in Hybrid Steam-Turbine and Offshore Wind-Turbine Generation System Using an Interline Power Flow Controller
指導教授:王醴
指導教授(外文):Li Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:248
中文關鍵詞:次同步共振混合式離岸風場線間功率潮流控制器穩定度串聯電容器組極點安置法
外文關鍵詞:Subsynchronous resonancehybrid-offshore wind farminterline power flow controllerstabilityseries-capacitor bankpole-assignment approach
相關次數:
  • 被引用被引用:1
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文係以美國電機電子工程師學會之次同步共振群組所提出的第二標準模型第一系統為第一研究架構,第二架構則是將第一研究架構的同步發電機改為相同容量之雙饋式感應發電機風場,第三架構為第一研究架構之同步發電機匯流排上併入一個雙饋式感應發電機離岸風場,三個研究架構皆採用線間功率潮流控制器抑制所產生之次同步共振與其他不穩定的模態。本文於三相平衡條件下,利用交-直軸等效電路建立同步發電機、雙饋式感應發電機離岸風場、串聯電容器組以及線間功率潮流控制器等系統模型,並利用極點安置法設計線間功率潮流控制器之阻尼控制器,俾使其抑制三個研究架構中的次同步共振與其他不穩定的模態。本文使用頻域的特徵值方法與時域的動態與暫態模擬方法對所研究之系統進行模擬分析,由模擬結果發現:當所研究之三個研究架構加入線間功率潮流控制器與其所設計之阻尼控制器後,所有工作點下的特徵值實部皆呈現負值,即表示整體系統能有效地抑制三個研究架構中所發生之次同步共振現象與其他不穩定的模態。
This thesis employs the Institute of Electrical and Electronics Engineers (IEEE) Second Benchmark Model, system-1 as the first studied system. The second studied system replaces the synchronous generator (SG) in the first studied system by a doubly-fed induction generator (DFIG)-based wind farm of the same capacity. The third studied system has a DFIG-based offshore wind farm (OWF) connected to the SG’s bus in the first studied system. The inter-line power flow controller (IPFC) is proposed to effectively suppress the subsynchronous resonance (SSR) and other unstable modes in the three studied systems. The d-q axis equivalent-circuit model under three-phase balanced loading conditions is used to establish the studied system including the SG, the DFIG-based OWF, the series-capacitor bank, the IPFC, and other system models. A damping controller of the proposed IPFC is designed by using the pole-assignment approach based on modal control theory to suppress unstable SSR modes and other unstable modes of the three studied systems. To demonstrate the effectiveness of the proposed scheme, a frequency-domain approach based on eigenvalue analysis and a time-domain scheme based on dynamic and transient simulations are both performed. The simulation results show that the proposed IPFC joined with the designed damping controller can effectively suppress the unstable SSR phenomena and other unstable modes of the three studied systems.
目錄
中文摘要 I
SUMMARY II
致謝 III
目錄 VIII
表目錄 XI
圖目錄 XVI
符號說明 XXV
第一章 緒論 1
1-1 研究動機 1
1-2 相關文獻回顧 10
1-3 本論文之貢獻 14
1-4 研究內容概述 15
第二章 研究架構及數學模型 18
2-1 前言 18
2-2 研究架構 19
2-3 蒸汽渦輪發電機系統 24
2-3-1 蒸汽渦輪機-同步發電機組的等效四質量-彈簧-阻尼器之數學模型 24
2-3-2 同步發電機之數學模型 26
2-3-3 激磁機之數學模型 29
2-3-4 調速機之數學模型 31
2-3-5 蒸汽渦輪機之數學模型 32
2-4 風渦輪發電機系統 33
2-4-1 風渦輪機之數學模型 33
2-4-2 風渦輪發電機的等效六質量-彈簧-阻尼器之數學模型 38
2-4-3 旋角控制器之數學模型 42
2-4-4 雙饋式感應發電機之數學模型 43
2-5 串聯電容器組之數學模型 51
2-6 線間功率潮流控制器之數學模型 52
第三章 線間功率潮流控制器之阻尼控制器 57
3-1 前言 57
3-2 比例-積分-微分阻尼控制器之控制模型 58
3-3 比例-積分-微分阻尼控制器之參數設計 59
3-4 特徵值靈敏度分析 67
第四章 小訊號穩定度分析 83
4-1 前言 83
4-2 系統扭轉模態之特徵向量 83
4-3 研究系統架構一之小訊號穩定度分析 87
4-3-1 研究系統架構一串聯補償比之變動 90
4-3-2 研究系統架構一同步發電機輸出實功之變動 96
4-3-3 研究系統架構一同步發電機輸出端電壓之變動 102
4-3-4 研究系統架構一同步發電機輸出功率因數之變動 108
4-4 研究系統架構二之小訊號穩定度分析 114
4-4-1 研究系統架構二之串聯補償比變動 116
4-4-2 研究系統架構二之風場風速變動 125
4-4-3 研究系統架構二的扭轉模態與串聯補償比-風速之關係 134
4-5 研究系統架構三之小訊號穩定度分析 139
4-5-1 研究系統架構三之串聯補償比變動 141
4-5-2 研究系統架構三之風場風速變動 154
第五章 系統之動態與暫態分析 172
5-1 前言 172
5-2 研究系統架構一之動態與暫態響應分析 173
5-2-1 研究系統架構一之轉矩干擾 173
5-2-2 研究系統架構一之三相短路 182
5-3 研究系統架構二之動態與暫態響應分析 190
5-3-1 研究系統架構二之模擬風速改變 190
5-3-2 研究系統架構二之實際風速改變 194
5-3-3 研究系統架構二之三相短路 198
5-4 研究系統架構三之動態與暫態響應分析 201
5-4-1 研究系統架構三之模擬風速改變 201
5-4-2 研究系統架構三之實際風速改變 211
5-4-3 研究系統架構三之三相短路 220
第六章 結論與未來研究方向 231
6-1 結論 231
6-2 未來研究方向 235
參考文獻 238
附錄I 研究之系統參數 244
附錄II 作者參與之計畫與研討會論文 247
[1] 陳映璇,台灣海峽得天獨厚,全球風電大廠都來搶投資!,風傳媒,2018年。 [Online]. Available: https://www.storm.mg/lifestyle/459162, retrieved date: Mar. 8, 2019.
[2] 4C Offshore, “Global Offshore Wind Speeds Rankings, 2014. [Online]. Available: https://www.4coffshore.com/windfarms/wind speeds.aspx, retrieved date: Mar. 8, 2019.
[3] 經濟部能源局,風力發電推動4年計畫,2019年。[Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=5493, retrieved date: Mar. 8, 2019.
[4] Y.-N. Yu, Electric Power System Dynamics, Cambridge, MA, USA: Academic Press, 1983.
[5] ABB, “Fixed series compensation, [Online]. Available: http://new.abb.com/facts/fixed-series-compensation, retrieved date: Mar. 15, 2018.
[6] M. C. Hall and D. A. Hodges, Experience with 500 kV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generation Station, New York, NY, USA: IEEE Press, 1976.
[7] D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of the subsynchronous resonance tests at Mohave, IEEE Trans. Power Apparatus and Systems, vol. PAS-94, no. 5, pp. 1878-1889, Sep. 1975.
[8] K. Gu, F. Wu, and X.-P. Zhang, “Sub-synchronous interactions in power systems with wind turbines: A review, IET Renewable Power Generation, vol. 13, no. 1, pp. 4-15, Jan. 2019.
[9] IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance, IEEE Trans. Power Apparatus and Systems, vol. PAS-96, no. 5, pp. 1565-1572, Sep. 1977.
[10] IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance, IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1057-1066, May 1985.
[11] IEEE Committee Report, “First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Apparatus and Systems, vol. PAS-98, no. 6, pp. 1872-1875, Nov. 1979.
[12] IEEE Committee Report, “Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 2, pp. 321-327, Feb. 1985.
[13] IEEE Committee Report, “Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Systems, vol. 6, no. 2, pp. 830-84, May 1991.
[14] M. R. Iravani, B. L. Agrawal, D. H. Baker, C. E. J. Bowler, R. G. Farmer, R. A. Hedin, E. H. V. Larsen, and J. F. Tang, “Fourth supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Systems, vol. 12, no. 3, pp. 1276-1282, Aug. 1997.
[15] IEEE SSR Working Group, “Countermeasures to subsynchronous resonance problems, IEEE Trans. Power Apparatus and Systems, vol. PAS-99, no. 5, pp. 1810-1818, Sep. 1980.
[16] IEEE SSR Working Group, “Proposed terms and definitions for subsynchronous oscillations, IEEE Trans. Power Apparatus and Systems, vol. PAS-99, no. 2, pp. 506-511, Mar. 1980.
[17] IEEE SSR Working Group, “Reader's guide to subsynchronous resonance, IEEE Trans. Power Systems, vol. 7, no. 2, pp. 150-157, Feb. 1992.
[18] S. Bhowmick, Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers, Boca Raton, FL, USA: CRC Press, 2016.
[19] L. Gyugyi, K. K. Sen, and C. D. Schauder, “The interline power flow controller concept: A new approach to power flow management in transmission systems, IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1115-1123, Jul. 1999.
[20] K. R. Padiyar and N. Prabhu, “Analysis of SSR with three-level twelve-pulse VSC-based interline power-flow controller, IEEE Trans. Power Delivery, vol. 22, no. 3, pp. 1688-1695, Jul. 2007.
[21] A. E. Hammad and M. El-Sadek, “Application of a thyristor-controlled Var compensator for damping subsynchronous oscillations in power systems, IEEE Trans. Power Apparatus and Systems, vol. PAS-103, no. 1, pp. 198-212, Jan. 1984.
[22] K. V. Patil, J. Senthil, J. Jiang, and R. M. Mathur, “Application of STATCOM for damping torsional oscillations in series compensated AC systems, IEEE Trans. Energy Conversion, vol. 13, no. 3, pp. 237-243, Sep. 1998.
[23] J. M. González, C. A. Cañizares, and J. M. Ramírez, “Stability modeling and comparative study of series vectorial compensators, IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 1093-1102, Apr. 2010.
[24] X. Xie, C.-Y. Zhang, H.-K. Liu, D.-X. Jiang, and B.-R. Zhou, “Continuous-mass-model-based mechanical and electrical co-simulation of SSR and its application to a practical shaft failure event, IEEE Trans. Power Systems, vol. 31, no. 6, pp. 5172-5180, Nov. 2016.
[25] Z. Xu and Z. Pan, “Influence of different flexible drive train models on the transient responses of DFIG wind turbine, in Proc. 2011 International Conference on Electrical Machines and Systems (ICEMS), Beijing, China, Aug. 20-23, 2011, pp 1-6.
[26] P. Pourbeik, R. J. Koessler, D. L. Dickmander, and W. Wong, “Integration of large wind farms into utility grids (Part 2 - Performance issues), in Proc. 2003 IEEE Power Engineering Society General Meeting, Toronto, ON, Canada, Jul. 13-17, 2003, pp. 1520-1525.
[27] L. Fan, R. Kavasseri, Z. L. Miao, and C. Zhu, “Modeling of DFIG-based wind farms for SSR analysis, IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2073-2082, Oct. 2010.
[28] J. Ma, L. Jiang, M. Wu, and C. Zhang, “SSR analysis of DFIG-based wind farm considering spatial distribution of wind speed, in Proc. 2016 IEEE Power and Energy Society General Meeting, Boston, MA, USA, Jul. 17-21, 2016, pp. 1-5.
[29] X. Chen, Y. Li, H. Liu, and W. Song, “Influence of regional load on subsynchronous resonance of wind farm-series compensated power transmission system, The Journal of Engineering, vol. 2017, no. 13, pp. 1702-1707, Oct. 2017.
[30] X. Zhu and Z. Pan, “Study on the influencing factors and mechanism of SSR due to DFIG-based wind turbines to a series compensated transmission system, in Proc. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, Jun. 19-21, 2017, pp. 1029-1034.
[31] X. Xie, X. Zhang, H. Liu, Y. Li, and C. Zhang, “Characteristic analysis of subsynchronous resonance in practical wind farms connected to series-compensated transmissions, IEEE Trans. Energy Conversion, vol. 32, no. 3, pp. 1117-1126, Sep. 2017.
[32] S. Jiang, A. M. Gole, U. D. Annakkage, and D. A. Jacobson, “Damping performance analysis of IPFC and UPFC controllers using validated small-signal models, IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 446-454, Jan. 2011.
[33] 曾世穎,採用統一功率潮流控制器於抑制混合蒸氣渦輪發電機與離岸風場之次同步共振,國立成功大學電機工程學系碩士論文,2018年6月。
[34] 趙清風(2001)。MATLAB Simulink。台北:全華科技圖書股份有限公司。
[35] P. M. Anderson, B. L. Agrawal, and J. E. V. Ness, Subsynchronous Resonance in Power Systems, New York, NY, USA: IEEE Press, 1990.
[36] IEEE Committee Report, “Computer representation of excitation systems, IEEE Trans. Power Apparatus and Systems, vol. PAS-87, no. 6, pp. 1460-1464, Jun. 1968.[37] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
[38] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers, IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
[39] P. M. Anderson and A. Bose, “Stability simulationof wind turbine systems, IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
[40] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,2011年6月。
[41] P. C. Krause, Analysis of Electric Machinery, New York, NY, USA: McGraw-Hill, 1986.
[42] K. T. Khu, “Subsynchronous resonance in power systems: damping of torsional pscillations, Ph.D dissertation, Department of Electronic Engineering, Iowa State University, Ames, IA, USA, 1977.
[43] 林彥甫,利用線間功率潮流控制器於混合離岸式風場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2013年6月。
[44] K. R. Padiyar, Analysis of Subsynchronous Resonance in Power systems, Norwell, MA, USA: Kluwer Academic Publishers, 1999.
[45] A. Adrees, “Power system modelling and SSR analysis methods in Proc. Risk Based Assessment of Subsynchronous Resonance in AC/DC Systems, Berlin, Germany: Springer, 2017.
[46] IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses, IEEE Standard 1110-2002, 2003.
[47] L. Wang, X. Xie, Q. Jiang, H. Liu, Y. Li, and H. Liu, “Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system, IEEE Trans. Power Systems, vol. 30, no. 5, pp. 2772-2779, Sep. 2015.
[48] H. Khalilinia and V. Venkatasubramanian, Subsynchronous resonance monitoring using ambient high speed sensor data, IEEE Trans. Power Systems, vol, 31, no. 2, pp. 1073-1083. Mar. 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊