跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉介寧
研究生(外文):Jie-NingLiou
論文名稱:Li2X2(MoO4)3 (X=Co,Ni) 低溫燒結材料之微波特性與應用
論文名稱(外文):Microwave Dielectric Properties and Applications of LTCC Using Li2X2(MoO4)3 (X=Co,Ni)
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:125
中文關鍵詞:微波介電低溫低損耗
外文關鍵詞:microwave dielectriclow-firablelow-loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要分別介紹四大部分,第一、二和三部分將介紹新開發的微波介電材料,第四部分介紹濾波器的模擬與實測。
首先第一部分為Li2Co2(MoO4)3陶瓷之微波介電特性,由實驗結果發現,在燒結溫度為840℃並持溫4小時擁有最佳的微波介電特性ε_r~9.1、Q×f~34,000 GHz、τ_f~-72 ppm⁄℃。第二部分為Li2Ni2(MoO4)3陶瓷之微波介電特性,觀察實驗結果,在燒結溫度為660℃並持溫4小時擁有最佳的微波介電特性ε_r~9.6、Q×f~28,000 GHz、τ_f~-71 ppm⁄℃。第三部分為利用Zn2+去進行少量取代,探討Li2Ni2-xZnx(MoO4)3 (0≤x≤0.1)陶瓷之微波介電特性,觀察實驗結果,在燒結溫度為660℃,x=0.05的Li2Ni1.95Zn0.05(MoO4)3擁有最佳的微波介電特性ε_r~10.9、Q×f~56,000 GHz、τ_f~-62 ppm⁄℃ 。
最後第四部分,我們以HFSS模擬濾波器電路,並將電路實作於FR4、氧化鋁、Li2Ni1.95Zn0.05(MoO4)3基板上,由結果可知,高介電常數能使電路面積縮小且高Q×f提高濾波器在頻率選擇上的表現。
In order to obtain a novel low-temperature co-fired ceramics, microwave dielectric properties of Li2Co2(MoO4)3 and Li2Ni2-xZnx(MoO4)3 (0≤x≤0.1) ceramics had been investigated. The experimental results show that Li2Co2(MoO4)3 has best properties at sintering temperature 840℃ for 4 hours, with ε_r~9.1, Q×f~34,000 GHz and τ_f~-72 ( ppm)⁄℃﹔the Li2Ni2(MoO4)3 has best properties at sintering temperature 660℃ for 4 hours, with ε_r~9.6 Q×f~28,000 GHz and τ_f~-71 ( ppm)⁄℃ ﹔the Li2Ni1.95Zn0.05(MoO4)3 has best properties at sintering temperature 660℃ for 4 hours, with ε_r~10.9 Q×f~56,000 GHz and τ_f~-62 ( ppm)⁄℃.In this paper, the band-pass filter was designed with Square open-loop resonator which contains Open-stub. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate, and its size was reduced by using high dielectric constant ceramics.
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 微波技術與共振器發展 4
2-2 材料的燒結 7
2-2-1 材料燒結之擴散方式 7
2-2-2 材料燒結之過程 8
2-2-3 燒結的種類 9
2-3 介電共振器原理 10
2-4 微波介電材料之特性 13
2-4-1 介電係數(Dilectric Constant, εr) 13
2-4-2 品質因數(Quality Factor, Q) 18
2-4-3 共振頻率溫度飄移係數(τf) 20
2-4-4 介電特性量測方法 21
2-5 拉曼光譜與分子振動模態簡介 29
2-5-1 拉曼光譜(Raman spectra) 29
2-5-2 分子的振動模態(Vibrational modes) 30
2-6 低溫共燒陶瓷(LTCC)技術簡介 31
第三章 微帶線及濾波器原理 32
3-1 濾波器原理 32
3-1-1 濾波器的簡介 32
3-1-2 濾波器之種類及其頻率響應 33
3-2 微帶線原理 36
3-2-1 微帶傳輸線的簡介 36
3-2-2 微帶線的傳輸模態 37
3-2-3 微帶線各項參數公式計算與考量 38
3-2-4 微帶線的不連續效應 41
3-2-5 微帶線的損失 48
3-3 微帶線諧振器的種類 50
3-3-1 λ/4短路微帶線共振器 50
3-3-2 λ/2開路微帶線共振器 52
3-4 共振器間的耦合形式 55
3-4-1 電場耦合(Electric Coupling) 55
3-4-2 磁場耦合(Magnetic Coupling) 60
3-4-3 混和耦合(Mixed Coupling) 64
3-5 濾波器設計 67
3-5-1 正方形開迴路共振器 67
3-5-2 四分之一波長開路殘斷 68
第四章 實驗程序與量測儀器 70
4-1 微波介電材料的製備 70
4-1-1 粉末的製備與球磨 71
4-1-2 粉末的煆燒 71
4-1-3 加入黏劑、過篩 71
4-1-4 壓模成形、去黏劑及燒結 72
4-2 微波介電材料的量測與分析 72
4-2-1 密度測量 72
4-2-2 X-Ray分析 73
4-2-3 SEM分析 73
4-2-4 拉曼光譜儀分析 74
4-3 濾波器的製作過程 75
第五章 實驗結果與討論 77
5-1 Li2Co2(MoO4)3的微波介電特性 78
5-1-1 Li2Co2(MoO4)3的XRD相組成分析 78
5-1-2 Li2Co2(MoO4)3的拉曼光譜分佈 80
5-1-3 Li2Co2(MoO4)3的SEM、EDS分析 81
5-1-4 Li2Co2(MoO4)3的相對密度分析 83
5-1-5 Li2Co2(MoO4)3的介電係數(εr)分析 84
5-1-6 Li2Co2(MoO4)3的品質因數與共振頻率乘積(Q×f)分析 85
5-1-7 Li2Co2(MoO4)3的共振頻率溫度飄移係數(τf)分析 86
5-1-8 Li2Co2(MoO4)3的晶格常數 87
5-2 Li2Ni2(MoO4)3的微波介電特性 90
5-2-1 Li2Ni2(MoO4)3的XRD相組成分析 90
5-2-2 Li2Ni2(MoO4)3的拉曼光譜分析 92
5-2-3 Li2Ni2(MoO4)3的SEM分析、EDS分析 93
5-2-4 Li2Ni2(MoO4)3的相對密度分析 95
5-2-5 Li2Ni2(MoO4)3的介電係數(εr)分析 96
5-2-6 Li2Ni2(MoO4)3的品質因數與共振頻率乘積(Q×f)分析 97
5-2-7 Li2Ni2(MoO4)3的共振頻率溫度飄移係數(τf)分析 98
5-2-8 Li2Ni2(MoO4)3的晶格常數 98
5-3 Li2Ni2-xZnx(MoO4)3 (x=0-0.1) 的微波介電特性 100
5-3-1 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的XRD相組成分析 100
5-3-2 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的SEM分析、EDS分析 103
5-3-3 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的相對密度分析 105
5-3-4 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的介電係數(εr)分析 106
5-3-5 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的品質因數與共振頻率乘積(Q×f)分析 107
5-3-6 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的共振頻率溫度飄移係數(τf)分析 109
5-3-7 Li2Ni2-xZnx(MoO4)3 (x=0-0.1)的晶格常數 110
5-4 濾波器的模擬與實作 112
5-4-1 玻璃纖維基板(FR4)之模擬與實作結果 113
5-4-2 氧化鋁基板之濾波器模擬與實作結果 115
5-4-3 Li2Ni1.95Zn0.05(MoO4)3 (自製基板)之濾波器模擬與實作結果 117
第六章 結論 121
參考文獻 123
1. Kawashima, S. G. Choi, J. Kim, S. Yoon and K. Hong, Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A=Mg, Zn, Mn) AMoO4 compounds, Journal of the European Ceramic Society, vol. 27, no. 8-9, pp. 3063-3067, 2007.
2. D. Zhou, C. Randall, L. Pang, H. Wang, X. Wu, J. Guo, G. Zhang, L. Shui and X. Yao, Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite-Related-Type Ceramics with Ultra-Low Sintering Temperatures, Journal of the American Ceramic Society, vol. 94, no. 3, pp. 802-805, 2010
3.Vreeland, F.K., A Sine-Wave Electrical Oscillator of the Organ Pipe Type. Physical Review (Series I), 1908. 27(4): pp. 286.
4.Goerth, J. Early magnetron development especially in Germany. in Origins and Evolution of the Cavity Magnetron (CAVMAG), 2010 International Conference on the. 2010. IEEE.
5.Varian, R.H. and S.F. Varian, A high frequency oscillator and amplifier. Journal of Applied Physics, 1939. 10(5): pp. 321-327.
6.Thumm, M. Historical German contributions to physics and applications of electromagnetic oscillations and waves. in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Russia. 2001.
7.Redhead, P., The Invention of the Cavity Magnetron and its Introduction into Canada and the USA. Physics in Canada, 2001. 57(6): pp. 321.
8.Richtmyer, R., Dielectric resonators. Journal of Applied Physics, 1939. 10(6):p p. 391-398.
9.Cohn, S.B., Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1968. 16(4): pp. 218-227.
10.Smith, W.F., 劉品均(譯), 施佑蓉(譯), 材料科學與工程(第三版). 2005: 高立圖書.
11.Cahn, J.W. and R. Heady, Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles. Journal of the American Ceramic Society, 1970. 53(7): pp. 406-409.
12.Huppmann, W.J. and G. Petzow, Sintering processes. 1979: Plenum Press.
13.German, R., Liquid phase sintering, 1985. Chapter. 1: pp. 5-8.
14.Jean, J. and C. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys. Journal of materials science, 1989. 24(2): pp. 500-504.
15.Pozar, D.M., Microwave engineering. 2009: John Wiley & Sons.
16.Kajfez, D., Basic principles give understanding of dielectric waveguides and resonators. Microwave System News, 1983. 13: pp. 152-161.
17.Kajfez, D., A.W. Glisson, and J. James, Computed modal field distributions for isolated dielectric resonators. IEEE transactions on Microwave Theory and Techniques, 1984. 32(12): pp. 1609-1616.
18.張盛富, 戴明鳳, 無線通信之射頻被動電路設計 1998: 全華出版社.
19.鄭景太, 淺談高頻低損失介電材料. 工業材料,176期, 2001.
20.W.D.Kingery, et al., 陶瓷材料概論. 1988: 曉園出版社.
21.Hakki, B. and P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 1960. 8(4): pp. 402-410.
22.Courtney, W.E., Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques, 1970. 18(8): pp. 476-485.
23.Wheless, P. and D. Kajfez. The use of higher resonant modes in measuring the dielectric constant of dielectric resonators. in Microwave Symposium Digest, 1985 IEEE MTT-S International. 1985. IEEE.
24.Kobayashi, Y. and M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(7): pp. 586-592.
25.Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008. 53(2): pp. 57-90.
26.Geiger, R.L., P.E. Allen, and N.R. Strader, VLSI design techniques for analog and digital circuits. Vol. 90. 1990: McGraw-Hill New York.
27.Pucel, R.A., D.J. Masse, and C.P. Hartwig, Losses in microstrip. IEEE transactions on microwave theory and techniques, 1968. 16(6): pp. 342-350.
28.Hong, J.-S.G. and M.J. Lancaster, Microstrip filters for RF/microwave applications. Vol. 167. 2004: John Wiley & Sons.
29.Kompa, G., Practical microstrip design and applications. 2005: Artech House.
30.Garg, R., I. Bahl, and M. Bozzi, Microstrip lines and slotlines. 2013: Artech house.
31.Matthaei, G.L., L. Young, and E.M.T. Jones, Microwave filters, impedance matching networks and coupling structures. Artech House, 1980.
32.Denlinger, E.J., Losses of microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 1980. 28(6): pp. 513-522.
33.Zhang, X.-C., Z.-Y. Yu, and J. Xu, Design of microstrip dual-mode filters based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2008. 18(10): pp. 677-679.
34.Zhou, M., X. Tang, and F. Xiao, Miniature microstrip bandpass filter using resonator-embedded dual-mode resonator based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2010. 20(3): pp. 139-141.
35.Lee, J.-R., J.-H. Cho, and S.-W. Yun, New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter. IEEE Microwave and Guided Wave Letters, 2000. 10(12): pp. 526-527.
36.Chung, M.-S., I.-S. Kim, and S.-W. Yun. Varactor-tuned hairpin bandpass filter with enhanced stopband performance. in Microwave Conference, 2006. APMC 2006. Asia-Pacific. 2006. IEEE.
37.Li, Y., et al., Pressure-induced amorphization of metavanadate crystals SrV2O6 and BaV2O6. Journal of Applied Physics, 2015. 118(3): pp. 035902.
38.Joung, M.R., et al., Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics. Journal of the American Ceramic Society, 2009. 92(12): pp. 3092-3094.
39.Tang B., Luo X., Fang Z., Zhou L., Zhang S., et al.,Microeave dielectric properties and crystal structure of CeO2 doped (Na1/2Nd1/2)TiO3 ceramics. Journal of Ceramic Silikaty, 2017. 61(4): pp. 354.
40.Shannon, R.D., Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied physics, 1993. 73(1): pp. 348-366.
41.Q. Ashton Acton, PhD,Issues in Applied Physics, 2011
42.M. Zhang, L. Li, W. Xia, Q. Liao, J. Alloys Comp. 537 (2012) pp.76–79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top