|
1. Kawashima, S. G. Choi, J. Kim, S. Yoon and K. Hong, Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A=Mg, Zn, Mn) AMoO4 compounds, Journal of the European Ceramic Society, vol. 27, no. 8-9, pp. 3063-3067, 2007. 2. D. Zhou, C. Randall, L. Pang, H. Wang, X. Wu, J. Guo, G. Zhang, L. Shui and X. Yao, Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite-Related-Type Ceramics with Ultra-Low Sintering Temperatures, Journal of the American Ceramic Society, vol. 94, no. 3, pp. 802-805, 2010 3.Vreeland, F.K., A Sine-Wave Electrical Oscillator of the Organ Pipe Type. Physical Review (Series I), 1908. 27(4): pp. 286. 4.Goerth, J. Early magnetron development especially in Germany. in Origins and Evolution of the Cavity Magnetron (CAVMAG), 2010 International Conference on the. 2010. IEEE. 5.Varian, R.H. and S.F. Varian, A high frequency oscillator and amplifier. Journal of Applied Physics, 1939. 10(5): pp. 321-327. 6.Thumm, M. Historical German contributions to physics and applications of electromagnetic oscillations and waves. in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Russia. 2001. 7.Redhead, P., The Invention of the Cavity Magnetron and its Introduction into Canada and the USA. Physics in Canada, 2001. 57(6): pp. 321. 8.Richtmyer, R., Dielectric resonators. Journal of Applied Physics, 1939. 10(6):p p. 391-398. 9.Cohn, S.B., Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1968. 16(4): pp. 218-227. 10.Smith, W.F., 劉品均(譯), 施佑蓉(譯), 材料科學與工程(第三版). 2005: 高立圖書. 11.Cahn, J.W. and R. Heady, Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles. Journal of the American Ceramic Society, 1970. 53(7): pp. 406-409. 12.Huppmann, W.J. and G. Petzow, Sintering processes. 1979: Plenum Press. 13.German, R., Liquid phase sintering, 1985. Chapter. 1: pp. 5-8. 14.Jean, J. and C. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys. Journal of materials science, 1989. 24(2): pp. 500-504. 15.Pozar, D.M., Microwave engineering. 2009: John Wiley & Sons. 16.Kajfez, D., Basic principles give understanding of dielectric waveguides and resonators. Microwave System News, 1983. 13: pp. 152-161. 17.Kajfez, D., A.W. Glisson, and J. James, Computed modal field distributions for isolated dielectric resonators. IEEE transactions on Microwave Theory and Techniques, 1984. 32(12): pp. 1609-1616. 18.張盛富, 戴明鳳, 無線通信之射頻被動電路設計 1998: 全華出版社. 19.鄭景太, 淺談高頻低損失介電材料. 工業材料,176期, 2001. 20.W.D.Kingery, et al., 陶瓷材料概論. 1988: 曉園出版社. 21.Hakki, B. and P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 1960. 8(4): pp. 402-410. 22.Courtney, W.E., Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques, 1970. 18(8): pp. 476-485. 23.Wheless, P. and D. Kajfez. The use of higher resonant modes in measuring the dielectric constant of dielectric resonators. in Microwave Symposium Digest, 1985 IEEE MTT-S International. 1985. IEEE. 24.Kobayashi, Y. and M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(7): pp. 586-592. 25.Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008. 53(2): pp. 57-90. 26.Geiger, R.L., P.E. Allen, and N.R. Strader, VLSI design techniques for analog and digital circuits. Vol. 90. 1990: McGraw-Hill New York. 27.Pucel, R.A., D.J. Masse, and C.P. Hartwig, Losses in microstrip. IEEE transactions on microwave theory and techniques, 1968. 16(6): pp. 342-350. 28.Hong, J.-S.G. and M.J. Lancaster, Microstrip filters for RF/microwave applications. Vol. 167. 2004: John Wiley & Sons. 29.Kompa, G., Practical microstrip design and applications. 2005: Artech House. 30.Garg, R., I. Bahl, and M. Bozzi, Microstrip lines and slotlines. 2013: Artech house. 31.Matthaei, G.L., L. Young, and E.M.T. Jones, Microwave filters, impedance matching networks and coupling structures. Artech House, 1980. 32.Denlinger, E.J., Losses of microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 1980. 28(6): pp. 513-522. 33.Zhang, X.-C., Z.-Y. Yu, and J. Xu, Design of microstrip dual-mode filters based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2008. 18(10): pp. 677-679. 34.Zhou, M., X. Tang, and F. Xiao, Miniature microstrip bandpass filter using resonator-embedded dual-mode resonator based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2010. 20(3): pp. 139-141. 35.Lee, J.-R., J.-H. Cho, and S.-W. Yun, New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter. IEEE Microwave and Guided Wave Letters, 2000. 10(12): pp. 526-527. 36.Chung, M.-S., I.-S. Kim, and S.-W. Yun. Varactor-tuned hairpin bandpass filter with enhanced stopband performance. in Microwave Conference, 2006. APMC 2006. Asia-Pacific. 2006. IEEE. 37.Li, Y., et al., Pressure-induced amorphization of metavanadate crystals SrV2O6 and BaV2O6. Journal of Applied Physics, 2015. 118(3): pp. 035902. 38.Joung, M.R., et al., Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics. Journal of the American Ceramic Society, 2009. 92(12): pp. 3092-3094. 39.Tang B., Luo X., Fang Z., Zhou L., Zhang S., et al.,Microeave dielectric properties and crystal structure of CeO2 doped (Na1/2Nd1/2)TiO3 ceramics. Journal of Ceramic Silikaty, 2017. 61(4): pp. 354. 40.Shannon, R.D., Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied physics, 1993. 73(1): pp. 348-366. 41.Q. Ashton Acton, PhD,Issues in Applied Physics, 2011 42.M. Zhang, L. Li, W. Xia, Q. Liao, J. Alloys Comp. 537 (2012) pp.76–79.
|