跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏柏丞
研究生(外文):PO-CHENGWEI
論文名稱:高能量效益與可靠度且具亞穩態偵測機制之次臨界區電源式物理不可複製函數
論文名稱(外文):A Highly Energy-Efficient and Reliable Physical Unclonable Function Based on Sub-threshold Voltage References with a Metastable Detection Mechanism
指導教授:邱瀝毅
指導教授(外文):Lih-Yih Chiou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:44
中文關鍵詞:資訊安全物理不可複製函數次臨界區電源製程變異
外文關鍵詞:Information SecurityPhysical unclonable functionSub-threshold voltage referencesProcess variation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於物聯網裝置的普及和通訊傳輸的快速發展,裝置的應用層面越來越廣泛,普及於日常生活之中,資訊安全性的議題也越來越逐漸受到人們的重視。傳統上使用加密演算法實現通訊安全,然而在現今物聯網追求輕量化、低能耗、高安全性的裝置,使用演算法顯然不是唯一解。相較於過去的加密方式,物理不可複製函數是透過晶片在製造過程之中所產生的變異,造成每顆晶片上微小差異,成為每顆晶片獨一無二的指紋,使得攻擊者難以破解。並依照此特性,實現輕量化及低能耗的設計。本論文是採用90奈米製程設計,提出具有高能量效益與可靠度的物理不可複製函數,以操作在次臨界區的方式,並且減少數位補償機制的使用,大幅減少電流的能量消耗。與過去相關的文獻相比,本論文所提出之物理不可複製函數,在能量消耗及可靠度均具有比較性。
In recent years, with rapid development of the Internet of Things (IoT) devices and the increase of communication transmission speed, IoT applications become more and increasingly extensive. Tons of connected devices are used in IoT. How to maintain information security on communication channel is one of important issues to human society. To enhance the IoT devices communication security, traditionally encryption algorithms are applied. However it is not the only solution to use software algorithm due to the demand of light-weight, low energy consumption, high security devices in recent year. Physical Unclonable Function(PUF) is produced by the variation while manufacturing process. The slight differences between chips become unique fingerprints and it is hard to be attacked. Due to the characteristics, a light-weight and low energy consumption design is proposed. In this thesis, we propose an energy-efficient and reliable PUF, which is operated in sub-threshold region and reduces digital compensation mechanism and current energy consumption. The proposed PUF is very competitive to other analog type PUFs in light of energy consumption and reliability.
摘要 i
致謝 ix
目錄 x
圖目錄 xii
表目錄 xiv
第1章 緒論 1
1.1 研究概觀 1
1.1.1 發展背景 1
1.1.2 物理不可複製函數 2
1.1.3 相關名詞介紹 3
1.1.4 物理不可複製函數之分類 7
1.2 研究動機 12
1.3 論文貢獻 13
1.4 論文架構 14
第2章 相關研究文獻 15
2.1 電流鏡式物理不可複製函數 15
2.2 電流鏡陣列式物理不可複製函數 18
2.3 電壓源陣列式物理不可複製函數 19
2.4 相關文獻總結 22
第3章 次臨界區電源式物理不可複製函數 24
3.1 設計概述 24
3.2 設計架構 25
3.3 電壓參考源 26
3.4 比較器 27
3.5 亞穩態偵測機制 29
第4章 實驗結果與分析 31
4.1 電路操作模擬 31
4.1.1 電壓參考源操作模擬 31
4.1.2 比較器偏壓及雜訊分析 32
4.1.3 亞穩態偵測機制 33
4.2 物理不可複製函數參數模擬 35
4.2.1 可靠度Reliability 35
4.2.2 獨特性Uniqueness 36
4.2.3 均勻性Uniformity 37
4.2.4 單元能量 Energy Per Bit 38
4.3 晶片佈局 39
第5章 結論與未來研究方向 40
5.1 結論 40
5.2 未來工作 42
參考文獻 43
[1]B.Halak, M.Zwolinski, and M. S.Mispan, “Overview of PUF-Based hardware security solutions for the internet of things, in Proc. Midwest Symp. Circuits Syst., no. October, pp. 1–4, 2017.
[2]Y.Lee, Y.Park, and D.Kim, “Security threats analysis and considerations for internet of things, in Proc. 8th Int. Conf. Secur. Technol. SecTech 2015, pp. 28–30, 2016.
[3]J. C.Talwana and H. J.Hua, “Smart World of Internet of Things (IoT) and Its Security Concerns, in Proc. 2016 IEEE Int. Conf. Internet Things; IEEE Green Comput. Commun. IEEE Cyber, Phys. Soc. Comput. IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016, pp. 240–245, 2017.
[4]R.Maes, “Physically Unclonable Functions: Constructions, Properties and Applications, Kathol. Univ. Leuven, Belgium, 2012.
[5]C. H.Chang, Y.Zheng, and L.Zhang, “A Retrospective and a Look Forward: Fifteen Years of Physical Unclonable Function Advancement, IEEE Circuits Syst. Mag., vol. 17, no. 3, pp. 32–62, 2017.
[6]C.Herder, M. D.Yu, F.Koushanfar, and S.Devadas, “Physical unclonable functions and applications: A tutorial, in Proc. IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.
[7]J. W.Lee, Daihyun Lim, B.Gassend, G. E.Suh, M.vanDijk, and S.Devadas, “A technique to build a secret key in integrated circuits for identification and authentication applications, pp. 176–179, 2004.
[8]A.Maiti, V.Gunreddy, and P.Schaumont, “A systematic method to evaluate and compare the performance of physical unclonable functions, Embed. Syst. Des. with FPGAs, vol. 9781461413, pp. 245–267, 2013.
[9]G. E.Suh and S.Devadas, “Physical Unclonable Functions for Device Authentication and Secret Key Generation, 44th ACM/IEEE Des. Autom. Conf., pp. 9–14, 2007.
[10]R.Kumar and W.Burleson, “On design of a highly secure PUF based on non-linear current mirrors, in Proc. IEEE Int. Symp. Hardware-Oriented Secur. Trust. HOST 2014, pp. 38–43, 2014.
[11]S.Lin, Y.Cao, X.Zhao, X.Wang, and X.Pan, “A compact ultra-low power physical unclonable function based on time-domain current difference measurement, in Proc. - IEEE Int. Symp. Circuits Syst., vol. 2016–July, pp. 277–280, 2016.
[12]Z.Wang et al., “Current Mirror Array: A Novel Circuit Topology for Combining Physical Unclonable Function and Machine Learning, IEEE Trans. Circuits Syst. I Regul. Pap., vol. 65, no. 4, pp. 1314–1326, 2018.
[13]Y.Cao, C.Chang, W.Zheng, and X.Zhao, “A Sub-pico Joules Per Bit Robust Physical Unclonable Function Based on Subthreshold Voltage References, in Proc. - 2018 IEEE Int. Symp. Circuits Syst. (ISCAS), Florence, Italy, 2018, pp. 1-5., pp. 1–5, 2018.
[14]I.Lee, D.Sylvester, and D.Blaauw, “A subthreshold voltage reference with scalable output voltage for low-power IoT systems, IEEE J. Solid-State Circuits, vol. 52, no. 5, pp. 1443–1449, 2017.
[15]A.Almansouri, A.Alturki, A.Alshehri, T.Al-Attar, and H.Fariborzi, “Improved StrongARM latch comparator: Design, analysis and performance evaluation, in Proc. PRIME 2017 - 13th Conf. PhD Res. Microelectron. Electron. Proc., pp. 89–92, 2017.
[16]S.Hashemi and B.Razavi, “Analysis of metastability in pipelined ADCs, IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1198–1209, 2014.
[17]L.Chen, A.Sanyal, J.Ma, X.Tang, and N.Sun, “Comparator common-mode variation effects analysis and its application in SAR ADCs, in Proc. IEEE Int. Symp. Circuits Syst., vol. 2016–July, pp. 2014–2017, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top