|
[1]A. Z. Mech and S. Rouse, “Macro and Micro Economic Principles of the Kyoto Protocol Result - Making Money, in Proc. IEEE Eic Ccc, 2006, pp. 1-2. [2]Z. Luo, Z. Hu, Y. Song, Z. Xu, H. Liu, L. Jia, and H. Lu, “Economic Analyses of Plug-in Electric Vehicle Battery Providing Ancillary Services, in Proc. IEEE IEVC, 2012, pp. 1-5. [3]T. Niikuni and K. Koshika, “Investigation of CO2 Emissions in Usage Phase due to an Electric Vehicle — Study of Battery Degradation Impact on Emissions, in Proc. IEEE EVS, 2013, pp. 1-7. [4]F. A. Rusu, A. G. Baciu, and G. Livint, “Applicability of Fuel Cell in Electric Vehicles, in Proc. IEEE EPE, 2018, pp. 529-533. [5]E. Alghsoon, A. Harb, and M. Hamdan, “Power Quality and Stability Impacts of Vehicle to Grid (V2G) Connection, in Proc. IEEE IREC, 2017, pp. 1-6. [6]S. Kulkarni, A. R. Thorat, and I. Korachagaon, “Bidirectional Converter for Vehicle to Grid (V2G) Reactive Power Operation, in Proc. IEEE ICCPCT, 2017, pp. 1-6. [7]J. H. Park and K. B. Lee, “A Two-stage Bidirectional DC/DC Converter with SiC-MOSFET for Vehicle-to-Grid (V2G) Application, in Proc. IEEE CENCON, 2017, pp. 288-293. [8]R. Zgheib, I. Kamwa, and K. Al-Haddad, “Comparison between Isolated and Non-Isolated DC-DC Converters for Bidirectional EV chargers, in Proc. IEEE ICIT, 2017, pp. 515-520. [9]L. Jing, X. Wang, B. Li, M. Qiu, B. Liu, and M. Chen, “An Optimized Control Strategy to Improve the Current Zero-Crossing Distortion in Bidirectional AC/DC Converter Based on V2G Concept, in Proc. IEEE IPEC, 2018, pp 878-882. [10]A. K. Verma, B. Singh, and D. T. Shahani, “Grid to Vehicle and Vehicle to Grid Energy Transfer Using Single-Phase Bidirectional AC-DC Converter and Bidirectional DC-DC Converter, in Proc. IEEE ICEAS, 2011, pp. 1-5. [11]A. K. Singh, R. Prasanna, and K. Rajashekara, “Modelling and Control of Novel Bidirectional Single-Phase Single-Stage Isolated AC-DC Converter with PFC for Charging of Electric Vehicles, in Proc. IEEE EIT, 2018, pp. 661-666. [12]E. Y. Yang, M. M. Alam, J. Y. Lin, Y. C. Hsieh, H. J. Chiu, and S. W. Kuo, “Study and Implementation of an Isolated Bidirectional Resonant Converter with Natural Commutation, in Proc. IEEE IFEEC, 2015, pp. 1-5. [13]G. Yamada, T. Norisada, F. Kusama, K. Akamatsu, and M. Michihira, “Operation Analysis of High Efficiency Grid Connected Bi-Directional Power Conversion System for Various Storage Battery Systems with Bi-Directional Switch Circuit Topology, in Proc. IEEE APEC, 2016, pp. 2607-2612. [14]H. Li, F. Z. Peng and J. S. Lawler, “A natural ZVS Medium-Power Bidirectional DC-DC Converter with Minimum Number of Devices, IEEE Trans. on Ind. Applications, vol. 39, no. 2, pp. 525-535, Mar. 2003. [15]S. Park and Y. Song, “An Interleaved Half-Bridge Bidirectional DC-DC Converter for Energy Storage System Applications, in Proc. IEEE ECCE, 2011, pp. 2029-2034. [16]B. Zhao, Q. Yu, and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC-DC Converter for Power Distribution in Microgrid, IEEE Trans. Power Electronics., vol. 27, no. 11, pp. 4667-4680, Nov. 2012. [17]J. P. Coimbra, R. C. Pontara, L. P. Loures, and P. S. Almeida, “An Isolated Bidirectional Soft-Switching Converter Based on LLC resonant Half-Bridge with Synchronous Rectification, in Proc. IEEE COBEP, 2017, pp. 1-8. [18]S. Zong, G. Fan and X. Yang, “Double Voltage Rectification Modulation for Bidirectional CLLLC Resonant Converter for Wide Voltage Range Operation, in Proc. IEEE PEAC, 2018, pp. 1-6. [19]Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of Bidirectional DC-DC Resonant Converter for Vehicle-to-Grid (V2G) Applications, IEEE Trans. Transp. Electrification, vol. 1, no. 3, pp. 232-244, Oct. 2015. [20]C. Liu, J. Wang, K. Colombage, C. Gould, and B. Sen, “A CLLC resonant converter Based Bidirectional EV Charger with Maximum Efficiency Tracking, in Proc. IET PEMD, 2016, pp. 1-6. [21]W. Chen, S. Wang, X. Hong, Z. Lu, and S. Ye, “Fully Soft-Switched Bidirectional Resonant DC-DC Converter with A New CLLC Tank, in Proc. IEEE APEC, 2010, pp. 1238-1242. [22]Z. Zhang, Y. Q. Wu, D. J. Gu, and Q. Chen, “Current Ripple Mechanism with Quantization in Digital LLC Converters for Battery Charging Applications, IEEE Trans. Power Electronics, vol. 33, no. 2, pp. 1303-1312, Feb. 2018. [23]G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack, IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 670-678, Mar. 2007. [24]C. M. Lai, J. Teh, and Y. H. Cheng, “An Efficient Active Ripple Filter for Use in Single-Phase DC-AC Conversion System, in Proc. IEEE ICAST, 2017, pp. 234-237. [25]L. Gu, X. Ruan, M. Xu, and K. Yao, “Means of Eliminating Electrolytic Capacitor in AC/DC Power Supplies for LED Lightings, IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1399-1408, May 2009. [26]X. Ruan, B. Wang, K. Yao, and S. Wang, “Optimum Injected Current Harmonics to Minimize Peak-to-Average Ratio of LED Current for Electrolytic Capacitor-Less AC–DC Drivers, IEEE Trans. Power Electronics, vol. 26, no. 7, pp. 1820-1825, Jul. 2011. [27]M. Mellincovsky, V. Yuhimenko, M. M. Peretz, and A. Kuperman, “Low-Frequency DC-Link Ripple Elimination in Power Converters With Reduced Capacitance by Multiresonant Direct Voltage Regulation, IEEE Trans. Ind. Electronics, vol. 64, no. 3, pp. 2015-2023, Mar. 2017. [28]K. W. Lee, Y. H. Hsieh, and T. J. Liang, “A Current Ripple Cancellation Circuit For Electrolytic Capacitor-Less AC-DC LED Driver, in Proc. IEEE APEC, 2013, pp. 1058-1061. [29]Y. C. Shen, T. J. Liang, W. J. Tseng, H. H. Chang, K. H. Chen, Y. J. Lu, and J. S. Li, “Non-Electrolytic Capacitor LED Driver with Feedforward Control, in Proc. IEEE ECCE, 2015, pp. 3223-3230. [30]Y. M. Lin, “Study on Improving Line Frequency Ripple of Bidirectional DC-DC CLLC Resonant Converter, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, Jun. 2018.
|