跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃玉新
研究生(外文):Hoang NgocTan
論文名稱:電動車輛新型傳動系統之設計
論文名稱(外文):On the Innovation Design of Novel Transmission Systems for Electrified Vehicles
指導教授:顏鴻森顏鴻森引用關係
指導教授(外文):Hong-Sen Yan
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:155
中文關鍵詞:電動車混合動力車混合傳動系統馬達傳動系統行星齒輪系傳動模擬創意性設計
外文關鍵詞:electric vehicleshybrid electric vehicleshybrid transmissionmotor transmissionplanetary gear trainstransmission simulationcreative design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
基於減少石油燃料的環境汙染、降低運輸成本、以及消費者對於新技術的興趣等因素,並且由於電池、傳動系統與馬達等零組件的技術創新,使得目前市面上已有多種電動車輛。
本論文根據顏氏創意性機構設計方法提出一套設計程序,旨在系統化地合成創造的油電混合車和電動車傳動機構。分析並研究這兩種應用於小客車的混合動力系統,多數傳動系統為單式行星齒輪系和複式行星齒輪系。透過創意性機構設計方法,有系統地合成出可行的傳動系統行星齒輪機構,並且透過動力源與離合器的配置,合成出無離合器與有離合器的傳動系統。
本研究提出的設計方法,總計合成出7組單式行星齒輪和87組複式行星齒輪,包括具有七桿的單式行星齒輪、雙行星齒輪、及複式行星齒輪,以及具有八桿的複式行星齒輪。接著,透過動力源與離合器的配置,合成出新型的混合動力系統。以設計過程的兩種新型可行設計為例,解析功流路徑和操作模式的工作原理。此外,這些設計應用於建模與電腦模擬流程,以獲得能源管理策略和操作模式變化的結果。
透過MATHLAB/SIMULINK軟體的模擬,對油電混合傳動系統而言,新型設計在市區與高速公路的油耗分別為58.38和 55.03 mpg;而對馬達傳動系統而言,在歐盟汽車運行工況下的模擬油耗為137 mpg,與市面上現有的油電混合車和電動車標準化油耗排名相比具競爭潛力。
Nowadays, with the achievement of technology that introduces new components such as transmissions, electric motors and batteries, several electric vehicles (EV) are released on the market. The important reasons are to decrease the environmental pollution by using the none fossil fuels, lower transportation operating costs, and general consumer interest in the new technology.
In this dissertation, a design flow chart is suggested and elucidated depended on an improved methodology of Yan’s creative mechanism design to synthesize the novel transmission mechanisms for hybrid electric vehicles (HEVs) and EVs. The hybrid transmission and motor transmission, two popular types of hybrid systems applied in vehicles, are analyzed and studied. In most transmissions, the mechanisms are simple planetary gear trains (PGTs) and compound PGTs. By using the techniques of power arrangement and clutch arrangement, the feasible mechanisms are applied for synthesizing clutchless and clutched transmissions.
There are 7 simple PGTs and 87 compound PGTs including the simple PGT, double planet PGT, compound PGTs with seven-link, and compound PGTs with eight-link that are synthesized. By using the arrangement techniques for power and clutches, many novel hybrid and motor transmissions are synthesized without or with clutches/brakes. Two types of synthesized novel feasible hybrid and motor transmissions are taken as the cases to dissect the working principle conjoined both power flow paths and operation modes. In addition, these designs are conducted for the modeling and computer simulation procedure to obtain the results of energy management strategy and operation mode variation.
By simulating with MATHLAB/SIMULINK, the simulation of novel designs have the fuel consumptions equal to 58.38 MPG in urban cycle and 55.03 MPG in highway condition for hybrid transmission and 137 MPG in new European drive cycle for motor transmission. The normalized fuel consumptions are very compatible with the existing HEV and EV models on the market.
CONTENTS
摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
CONTENTS IV
LIST OF TABLES VIII
LIST OF FIGURES IX
NOMENCLATURES XIII
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Objectives 3
1.3 Organization of Dissertation 4
Chapter 2 Literature Review 6
2.1 Historical Development 6
2.2 Architectures of HEVs 8
2.3 Architectures of EVs 12
2.4 Methodology 16
2.5 Summary 19
Chapter 3 Synthesis of the Feasible PGT(s) Mechanisms 20
3.1 Procedure of Configuration Synthesis 20
3.2 The Simple PGT 21
3.2.1 Existing Design 21
3.2.2 Generalized Kinematic Chains 23
3.2.3 Feasible Specialized Chains 23
3.2.4 Atlas of Mechanism Designs 27
3.3 The Double Planet PGT 27
3.3.1 Existing Design 27
3.3.2 Generalized Kinematic Chains 29
3.3.3 Feasible Specialized Chains 29
3.3.4 Atlas of Mechanism Designs 33
3.4 The Compound PGTs 33
3.4.1 Existing Design 33
3.4.2 Generalized Kinematic Chains 36
3.4.3 Feasible Specialized Chains 37
3.4.4 Atlas of Mechanism Designs 41
3.5 Summary 41
Chapter 4 Synthesis of the Hybrid Transmissions 44
4.1 Hybrid Transmissions with the Simple PGT 44
4.1.1 Six-link Mechanism 44
4.1.2 Atlas of Clutchless Hybrid Transmissions 45
4.1.3 Atlas of Clutched Hybrid Transmissions 47
4.2 Hybrid Transmissions with the Compoud PGTs 51
4.2.1 Eight-link Mechanism 51
4.2.2 Atlas of Clutchless Hybrid Transmissions 51
4.2.3 Atlas of Clutched Hybrid Transmissions 54
4.3 Novel Hybrid Transmissions 58
4.4 Summary 58
Chapter 5 Synthesis of the Motor Transmissions 60
5.1 Motor Transmissions with the Simple PGT 60
5.1.1 Six-link Mechanism 60
5.1.2 Atlas of Clutchless Motor Transmissions 61
5.1.3 Atlas of Clutched Motor Transmissions 62
5.2 Motor Transmissions with The Compoud PGTs 65
5.2.1 Eight-link Mechanism 65
5.2.2 Atlas of Clutchless Motor Transmissions 66
5.2.3 Atlas of Clutched Motor Transmissions 68
5.3 Novel Motor Transmissions 70
5.4 Summary 70
Chapter 6 Design of the Novel Transmission Systems 72
6.1 Teeth Number Constraints 72
6.1.1 Gear Teeth Constraints 72
6.1.2 Planetary Gear Teeth Constraints 72
6.1.3 Gear Ratio Constraints 74
6.1.4 Assembly Constraints 74
6.2 Design Specifications 76
6.2.1 Vehicle and Environment 76
6.2.2 Required Performances 77
6.2.3 Power Sources 77
6.3 Teeth Number Design 78
6.3.1 Feasible Gear Ratios 78
6.3.2 Teeth Number Calculation 81
6.4 Kinematic and Dynamic Analyses 82
6.4.1 A Novel Hybrid Transmission Using a Compound PGT 82
6.4.2 A Motor Transmission Using a Compound PGT 89
6.5 Summary 93
Chapter 7 Simulation of the Novel Transmission Systems 94
7.1 Simulation Model 95
7.2 Control Logic 104
7.2.1 Gear Determination 105
7.2.2 Fuel Consumption 106
7.2.3 Mode Determination 109
7.3 Optimization 110
7.3.1 Optimization Constraints 110
7.3.2 Charging Condition Optimization 112
7.3.3 Combined Power Mode Optimization 114
7.3.4 Split Power Mode Optimization 115
7.4 Simulation Result 117
7.4.1 The Novel Hybrid Transmission 117
7.4.2 The Novel Motor Transmission 120
7.4.3 Comparison 123
7.5 Summary 126
Chapter 8 Conclusions and Suggestions 128
8.1 Conclusions 128
8.2 Suggestions 129
REFERENCES 131
Appendix A Atlas of Block Diagrams of PGT Mechanisms 137
Appendix B Atlas of (6, 8) Clutchless Hybrid Transmissions 139
Appendix C Atlas of (6, 8) Clutched Hybrid Transmissions 140
Appendix D Atlas of (8, 12) Clutchless Hybrid Transmissions 141
Appendix E Atlas of (8, 12) Clutched Hybrid Transmissions 145
Appendix F Atlas of (6, 8) Clutchless Motor Transmissions 149
Appendix G Atlas of (6, 8) Clutched Motor Transmissions 150
Appendix H Atlas of (8, 12) Clutchless Motor Transmissions 151
Appendix I Atlas of (8, 12) Clutched Motor Transmissions 152
VITA 153
自述 154
COPYRIGHT STATEMENT 155
REFERENCES
[1]Alternative Fuel for Cars, available online: https://www.rac.co.uk/drive/advice/ emissions/alternative-fuels/, accessed June 15, 2018.
[2]What is an Electric Car? available online: http://www.plugincars.com/electric-cars, accessed October 14, 2014.
[3]Guang, W., Xing, Z., and Zuomin, D., 2014, “Powertrain architectures of electrified vehicles: Review, classification and comparison Journal of the Franklin Institute 352 (2015) 425-448.
[4]Hoang, N. T. and Yan, H. S., 2017, “Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems with Eight-Bar Mechanisms, Energies 10, 1044.
[5]Hoang, N. T. and Yan, H. S., 2018, “Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems with Eight-Link Ravigneaux Mechanisms, Journal of the Chinese Society of Mechanical Engineers (Taipei) 34, 345–355.
[6]Hoang, N. T. and Yan, H. S., 2018. “On the Design of In-Wheel-Hub Motor Transmission Systems with Six-Link Mechanisms for Electric Vehicles, Energies 11, 2920.
[7]Hoang, N. T. and Yan, H. S., 2019. “On the Innovation Design for Two-Motor Transmissions with Eight-Link Mechanisms in the Electric Vehicles, Applied Sciences 9, 140.
[8]Berman, B., Gelb, G. H., Richardson, N. A., and Wang, T. C., 1973, “Power Train Using Multiple Power Sources, United States Patent No. 3,732,751.
[9]Hata, H., Kojima, M., Adachi, M., and Shimizu, T., 2006, “Power Transmission System, United States Patent No. 7,081,060.
[10]Schmidt, M. R., 1996, “Two-Mode, Compound-Split, Electro-Mechanical, Vehicular Transmission, United States Patent No. 5,558,589.
[11]Ai, X. and Mohr, T. W., 2005, “Output-Split and Compound-Split Infinitely Variable Transmission, United States Patent No. 6,964,627.
[12]Villeneuve, A., 2004, “Dual Mode Electric Infinitely Variable Transmission, Proc. of the SAE TOPTECH Meeting on Continuously Variable Transmission, March 8-11, Detroit, MI, pp. 1-11.
[13]Hoeijmakers, M. J., 2006, “The Electric Variable Transmission, IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1092-1100.
[14]Yang, Y., Arshad-Ali, K., Roeleveld, J., and Emadi, A., 2016, “State-of-the-art electrified powertrains-hybrid, plug-in, and electric vehicles, Int. J. Powertrains, 5, doi:10.1504/IJPT.2016.075181.
[15]Yamaguchi, J., 1997, “Toyota readies gasoline/electric hybrid system, Automot. Eng, 105, 55–57.
[16]Nagasaka, A., Nada, M., Hamada, H., Hiramatsu, S., Kikuchi, Y., and Kato, H. “Development of the hybrid/battery ECU for the Toyota hybrid system, Proceedings of the SAE 1998 International Congress & Exposition, Detroit, Michigan, 23–26, February 1998.
[17]Takasaki, A., Mizutani, T., Kitagawa, K., Yamahana, T., Odaka, K., Kuzuya, T., Mizuno, Y., and Nishikawa, Y., “Development of new hybrid transmission for 2009 Prius, Proceedings of the EVS24 International Battery, Hybrid Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, 13–16 May 2009.
[18]Higuchi, N., Sunaga, Y., Tanaka, M., and Shimada, H., 2013, “Development of a new two-motor plug-in hybrid system, SAE Int. J. Alt. Powertr, 2, 135–145.
[19]Lehongre C., 2002, “Hybrid Engine Transmission Unit Comprising a Double Planetary Gear Train, United State Patent No. 6,468,175.
[20]Ai, X., Mohr, T.W., and Anderson, S., “An electromechanical infinitely variable speed transmission, Proceedings of the SAE 2004 World Congress & Exhibition, Detroit, MI, USA, 8–11 March 2004.
[21]Tesla, available online: https://en.wikipedia.org/wiki/Tesla,_Inc, accessed July 20, 2016.
[22]Wilkinson, W. H., 1960, “Four Ways to Calculate Planetary Gear Trains, Machine Design, pp. 155-159.
[23]Wouk, V., 1997, Hybrid Electric Vehicles, Scientific American, pp. 70-74.
[24]Robert Anderson, available online: https://en.wikipedia.org/wiki/Robert_Anderson, accessed February 5, 2017.
[25]History of the electric vehicle, available online: https://en.wikipedia.org/wiki/ History_of_the_electric_vehicle, accessed April 16, 2018.
[26]Berman, B., “History of Hybrid Vehicles, HybridCARS, available online: http://www.hybridcars.com/history-of-hybrid-vehicles/, accessed May 14, 2015.
[27]Nagano, S., Morisawa, K., Matsui, H., and Ibaraki, R., 2000, “Hybrid Drive System Wherein Planetary Gear Mechanism is Disposed Radially Inwardly of Stator Coil of Motor/Generator, United States Patent No. 6,155,364.
[28]Hata, H., Kojima, M., Adachi, M., and Shimizu, T., 2006, “Power Transmission System, United States Patent No. 7,081,060.
[29]Wakura, S., Omote, K., Ozaki, K., Tsukamoto, K., Yamaguchi, K., Adachi, M., Motoike, K., and Kojima, M., 2007, “Hybrid Drive System and Vehicle Equipped Therewith, United States Patent No. 7,255,186.
[30]Nagamatsu, S., 2012, “Power Transmission Apparatus of Hybrid Vehicle, United States Patent No. 8,142,317.
[31]Iwanaka, M., Takami, S., Ike, N., Sanji, H., Kawaguchi, M., Ideshio, Y., and Okuwaki, S., 2012, “Hybrid Drive Device, United States Patent No. 8,162,084.
[32]Kumazaki, K., Matsubara, T., Tabata, A., Imai, K., Kaifuku, M., Yoshida, M., Imamura, T., and Iwase, Y., 2012, “Hybrid Vehicle Drive System, United States Patent No. 8,308,593.
[33]Shimasaki, Y., Nakano, K., Fukuchi, H., Takahashi, H., Sawamura, K., and Wakashiro, T., 2001, “Hybrid Vehicle, United States Patent No. 6,186,255.
[34]Kaita, K. and Hirasawa, T., 2013, “Hybrid Vehicle and Control Method of Hybrid Vehicle, United States Patent No. 8,583,309.
[35]Schmidt, M. R., 1996, “Two-mode, Input-split, Parallel, Hybrid transmission, United States Patent No. 5,558,588.
[36]Zhang, D., Chen, J., Hsieh, T., Rancourt, J., and Schmidt, M. R., 2001, “Dynamic Modeling and Simulation of Two-mode Electric Variable Transmission, Proc. IMechE, Part D: J. Automobile Engineering, 215(11), pp. 1217-1223.
[37]Grewe, T. M., Conlon, B. M., and Holmes, A. G., 2007, “Defining the General Motors 2-mode Hybrid Transmission, SAE World Congr Detroit, MI, SAE Paper 2007-01-0273.
[38]Ahn, K., Cho, S., Lim, W., Park, Y.-I., and Lee, J. M., 2006, “Performance Analysis and Parametric Design of the Dual-mode Planetary Gear Hybrid Powertrain, Proc. IMechE, Part D: J. Automobile Engineering, 220(11), pp. 1601-1614.
[39]Miller, J. M., 2006, “Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type, IEEE Transactions on Power Electronics, 21(3), pp. 756-767.
[40]Ai, X., Mohr, T., and Anderson, S., 2004, “An Electro-mechanical Infinitely Variable Speed Transmission, Proc. of Soc. Automotive Eng. World Congr. Exh., Detroit, MI, SAE Paper 2004-01-0354.
[41]Ai, X. and Mohr, T. W., 2005, “Output-split and Compound-split Infinitely Variable Transmission, United States Patent No. 6,964,627.
[42]Tsai, L. W., Schultz, G., and Higuchi, N., 2001, “A Novel Parallel Hybrid Transmission, ASME Trans., J. Mech. Des., 123(2), pp. 161-168, United States Patent No. 6,592,484.
[43]He, J., and He, H., 2012, “Powertrain and method for a kinetic hybrid vehicle United States Patent No. 0,196,713.
[44]Weiss, H., 1998, “Electric wheel drive for a utility vehicle United States Patent No. 5,813,488.
[45]Lyon, A. P., 2008, “Compact fault tolerant variable cross-drive electromechanical transmission United States Patent No. 7,326,141.
[46]Gunji, D., Matsuda, Y., and Kimura, G., 2014, “Wheel hub motor United States Patent No. 8,758,178.
[47]NSK’s website, available online: http://www.nsk.com/company/news/2017/ press0119a.html, accessed January 19, 2017.
[48]Yan, H.-S., 1998, Creative Design of Mechanical Devices, Springer, Singapore.
[49]Yan, H.-S., 1992, “A Methodology for Creative Mechanism Design, Mech. Mach. Theory, 27(3), pp. 235-242.
[50]Ngo, H. T., and Yan, H. S., 2015, “Novel Configurations for Hybrid Transmissions Using a Simple Planetary Gear Train, Transactions of the ASME, J. Mechanisms and Robotics, 8.2: 021020.
[51]Ngo, H. T., and Yan, H. S., 2016, “Configuration synthesis of parallel hybrid transmissions, Mech. Mach. Theory, 97: 51–71.
[52]Ngo, H. T., and Yan, H. S., 2015, “Configuration synthesis of series-parallel hybrid transmission, Inst. Mech. Eng, 230, 664–678.
[53]Nagano, S., Morisawa, K., Matsui, H., and Ibaraki, R., 2000, “Hybrid Drive System Wherein Planetary Gear Mechanism is Disposed Radially Inwardly of Stator Coil of Motor/Generator, United States Patent No. 6,155,364.
[54]Amend, J. M., 2010, “Charge Up, Chevy Volt Rises Above Sound, Fury of Introduction, Wards Auto, available online: http://wardsauto.com/news-analysis/ chevy-volt-rises-above-sound-fury-introduction, accessed July 27, 2014.
[55]Yan, H. S. and Chiu, Y. T., 2014, “An Improved Algorithm for the Construction of Generalized Kinematic Chains, Mech. Mach. Theory, 78(2014), pp. 229-247.
[56]Kima, Y., and Hamada, T., 2004, “Control Device for In-Wheel Transmissions in an Electric Vehicle, United States Patent No. 0,668,841.
[57]Tsai, L. W., 1995, “Design of a Power Regulating Gearbox for Parallel Hybrid Electric Vehicles, In Proceedings of the 4th National Conference on Appl. Mech. and Rob, Cincinnati, OH, Paper No. AMR-95-052.
[58]Schultz, G. A., Tsai, L. W., Higuchi, N., and Tong, I. C., 2001, Development of a Novel Parallel Hybrid Transmission, SAE Trans., J. of Pass. Cars - Mechanical Systems, paper No. 2001-01-0875.; also in SAE Special Publications on Transmission & Driveline Systems, SP-1598.
[59]Mi, C., Masrur, M. A., and Gao, D. W., 2011, Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, John Wiley & Sons, Ltd, Singapore, Chapter 1.
[60]Bucknor, N.K., Raghavan, M., and Holmes, A.G., 2009, “Electrically variable transmission having at least three planetary gear sets and one fixed interconnection, United States Patent No. 7,497,797.
[61]Lin, S. C., 1997, “On the Design and Analysis of Two-speed and Three-speed Automatic Transmissions for Motorcycles (in Chinese), M.S. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, pp.48-57.
[62]Hsu, C. H., and Huang, R. H., 2009, “Systematic design of four-speed ravigneaux-type automatic transmissions, Journal of the Chinese Society of Mechanical Engineers (Taipei), 30.3: 199~207.
[63]Wong, J. Y., 2008, Theory of ground vehicles, John Wiley & Sons, Ltd, Singapore.
[64]Wipke, K. B., Cuddy, M. R., and Burch, S. D., 1999, “ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach, IEEE transactions on vehicular technology, 48.6: 1751-1761.
[65]Markel, T., Brooker, A., Hendricks, T., Johnson, V., Kelly, K., Kramer, B., O’Keefe, M., and Wipke, K., 2002, “ADVISOR: a systems analysis tool for advanced vehicle modeling, Journal of power sources, 110.2: 255-266.
[66]Dong, P., Liu, Y., Tenberge, P., and Xu, X., 2017, “Design and analysis of a novel multi-speed automatic transmission with four degrees-of-freedom, Mech. Mach. Theory, 108: 83-96.
[67]Auger, D., 2017, “Mathworks file exchange - Driving Cycle (Simulink Block), available online: https://www.mathworks.com/matlabcentral/fileexchange/46777-driving -cycle-simulink-block/, accessed December 08, 2017.
[68]Arora, J., 2011, Introduction to Optimum Design, Academic Press, Cambridge, Massachusetts, USA.
[69]Car and Driver, 2017, “Car Reviews - New Cars For 2016 and 2017, available online: https://www.caranddriver.com/, accessed October 29, 2017.
[70]Best electric cars, available online: https://www.edmunds.com/electric-car/, accessed October 10, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top