|
[1]E. C. Roosen-Runge, On the early development—bipolar differentiation and cleavage—of the zebra fish, Brachydanio rerio, The Biological Bulletin, vol. 75, pp. 119-133, 1938. [2]G. Streisinger, F. Singer, C. Walker, D. Knauber, and N. Dower, Segregation analyses and gene-centromere distances in zebrafish, Genetics, vol. 112, pp. 311-319, 1986. [3]K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature, vol. 496, p. 498, 2013. [4]M. B. Orger and G. G. de Polavieja, Zebrafish behavior: opportunities and challenges, Annual review of neuroscience, vol. 40, pp. 125-147, 2017. [5]K. B. Tierney, Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1812, pp. 381-389, 2011. [6]J. Bakkers, Zebrafish as a model to study cardiac development and human cardiac disease, Cardiovascular research, vol. 91, pp. 279-288, 2011. [7]E. Chen and S. C. Ekker, Zebrafish as a genomics research model, Current pharmaceutical biotechnology, vol. 5, pp. 409-413, 2004. [8]K. Wang, J. Ma, M. He, G. Gao, H. Xu, J. Sang, et al., Toxicity assessments of near-infrared upconversion luminescent LaF3: Yb, Er in early development of zebrafish embryos, Theranostics, vol. 3, p. 258, 2013. [9]C. Chakraborty, A. R. Sharma, G. Sharma, and S.-S. Lee, Zebrafish: A complete animal model to enumerate the nanoparticle toxicity, Journal of nanobiotechnology, vol. 14, p. 65, 2016. [10]F. Yang, C. Gao, P. Wang, G.-J. Zhang, and Z. Chen, Fish-on-a-chip: microfluidics for zebrafish research, Lab on a Chip, vol. 16, pp. 1106-1125, 2016. [11]K. Mani, T.-C. C. Chien, B. Panigrahi, and C.-Y. Chen, Manipulation of zebrafish’s orientation using artificial cilia in a microchannel with actively adaptive wall design, Scientific reports, vol. 6, p. 36385, 2016. [12]D. Choudhury, D. van Noort, C. Iliescu, B. Zheng, K.-L. Poon, S. Korzh, et al., Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development, Lab on a Chip, vol. 12, pp. 892-900, 2012. [13]T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Wählby, and M. F. Yanik, Fully automated cellular-resolution vertebrate screening platform with parallel animal processing, Lab on a Chip, vol. 12, pp. 711-716, 2012. [14]R. Olive, S. Wolf, A. Dubreuil, V. Bormuth, G. Debrégeas, and R. Candelier, Rheotaxis of larval zebrafish: behavioral study of a multi-sensory process, Frontiers in systems neuroscience, vol. 10, p. 14, 2016. [15]P. Oteiza, I. Odstrcil, G. Lauder, R. Portugues, and F. Engert, A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish, Nature, vol. 547, p. 445, 2017. [16]K. Dooley and L. I. Zon, Zebrafish: a model system for the study of human disease, Current opinion in genetics & development, vol. 10, pp. 252-256, 2000. [17]G. J. Lieschke and P. D. Currie, Animal models of human disease: zebrafish swim into view, Nature Reviews Genetics, vol. 8, p. 353, 2007. [18]R. Willemsen, S. van’t Padje, J. C. van Swieten, and B. A. Oostra, Zebrafish (Danio rerio) as a model organism for dementia, in Animal Models of Dementia, ed: Springer, 2011, pp. 255-269. [19]W. Alderton, a versatile in vivo model for drug safety assessment, Drug Discovery, p. 49, 2006. [20]S. Saleem and R. R. Kannan, Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery, Cell death discovery, vol. 5, p. 45, 2018. [21]J. Bak-Coleman, D. Smith, and S. Coombs, Going with, then against the flow: evidence against the optomotor hypothesis of fish rheotaxis, Animal Behaviour, vol. 107, pp. 7-17, 2015/09/01/ 2015. [22]R. Portugues and F. Engert, The neural basis of visual behaviors in the larval zebrafish, Current opinion in neurobiology, vol. 19, pp. 644-647, 2009. [23]S. S. Easter Jr and G. N. Nicola, The development of eye movements in the zebrafish (Danio rerio), Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, vol. 31, pp. 267-276, 1997. [24]J. D. Burrill and S. S. Easter Jr, Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio), Journal of Comparative Neurology, vol. 346, pp. 583-600, 1994. [25]S. C. Neuhauss, O. Biehlmaier, M. W. Seeliger, T. Das, K. Kohler, W. A. Harris, et al., Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish, Journal of Neuroscience, vol. 19, pp. 8603-8615, 1999. [26]M. B. Orger, M. C. Smear, S. M. Anstis, and H. Baier, Perception of Fourier and non-Fourier motion by larval zebrafish, Nature neuroscience, vol. 3, p. 1128, 2000. [27]E. Lyon, On rheotropism. I.—Rheotropism in fishes, American Journal of Physiology-Legacy Content, vol. 12, pp. 149-161, 1904. [28]M. B. Orger and H. Baier, Channeling of red and green cone inputs to the zebrafish optomotor response, Visual neuroscience, vol. 22, pp. 275-281, 2005. [29]J. Bilotta and S. Saszik, The zebrafish as a model visual system, International Journal of Developmental Neuroscience, vol. 19, pp. 621-629, 2001. [30]S. C. Neuhauss, Behavioral genetic approaches to visual system development and function in zebrafish, Journal of neurobiology, vol. 54, pp. 148-160, 2003. [31]A. Ghysen and C. Dambly-Chaudière, The lateral line microcosmos, Genes & development, vol. 21, pp. 2118-2130, 2007. [32]W. K. Metcalfe, C. B. Kimmel, and E. Schabtach, Anatomy of the posterior lateral line system in young larvae of the zebrafish, Journal of Comparative Neurology, vol. 233, pp. 377-389, 1985. [33]S. Dijkgraaf, The functioning and significance of the lateral‐line organs, Biological Reviews, vol. 38, pp. 51-105, 1963. [34]A. Suli, G. M. Watson, E. W. Rubel, and D. W. Raible, Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells, PloS one, vol. 7, p. e29727, 2012. [35]D. Hoekstra and J. Janssen, Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan, Environmental biology of fishes, vol. 12, pp. 111-117, 1985. [36]J. C. Montgomery and A. R. Hamilton, Sensory contributions to nocturnal prey capture in the dwarf scorpion fish (Scorpaena papillosus), Marine & Freshwater Behaviour & Phy, vol. 30, pp. 209-223, 1997. [37]J. H. Blaxter and L. A. Fuiman, Function of the free neuromasts of marine teleost larvae, in The mechanosensory lateral line, ed: Springer, 1989, pp. 481-499. [38]K. E. Feitl, V. Ngo, and M. J. McHenry, Are fish less responsive to a flow stimulus when swimming?, Journal of Experimental Biology, vol. 213, pp. 3131-3137, 2010. [39]B. L. Partridge and T. J. Pitcher, The sensory basis of fish schools: relative roles of lateral line and vision, Journal of comparative physiology, vol. 135, pp. 315-325, 1980. [40]M. McHenry, K. Feitl, J. Strother, and W. Van Trump, Larval zebrafish rapidly sense the water flow of a predator's strike, Biology Letters, vol. 5, pp. 477-479, 2009. [41]A. Khalili and P. Rezai, Microfluidic devices for embryonic and larval zebrafish studies, Briefings in functional genomics, 2019. [42]P. K. Chan, C. C. Lin, and S. H. Cheng, Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos, BMC biotechnology, vol. 9, p. 11, 2009. [43]C. C. Cosentino, B. L. Roman, I. A. Drummond, and N. A. Hukriede, Intravenous microinjections of zebrafish larvae to study acute kidney injury, JoVE (Journal of Visualized Experiments), p. e2079, 2010. [44]F. Yang, Z. Chen, J. Pan, X. Li, J. Feng, and H. Yang, An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics, Biomicrofluidics, vol. 5, p. 024115, 2011. [45]A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope, Development, vol. 139, pp. 3242-3247, 2012. [46]Y.-c. Shen, D. Li, A. Al-Shoaibi, T. Bersano-Begey, H. Chen, S. Ali, et al., A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development, Zebrafish, vol. 6, pp. 201-213, 2009. [47]J. Akagi, K. Khoshmanesh, B. Evans, C. J. Hall, K. E. Crosier, J. M. Cooper, et al., Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos, PloS one, vol. 7, p. e36630, 2012. [48]J. Akagi, K. Khoshmanesh, C. J. Hall, J. M. Cooper, K. E. Crosier, P. S. Crosier, et al., Fish on chips: Microfluidic living embryo array for accelerated in vivo angiogenesis assays, Sensors and Actuators B: Chemical, vol. 189, pp. 11-20, 2013. [49]W. Wang, X. Liu, D. Gelinas, B. Ciruna, and Y. Sun, A fully automated robotic system for microinjection of zebrafish embryos, PloS one, vol. 2, p. e862, 2007. [50]L. L. Bischel, B. R. Mader, J. M. Green, A. Huttenlocher, and D. J. Beebe, Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging, Lab on a Chip, vol. 13, pp. 1732-1736, 2013. [51]X. Lin, S. Wang, X. Yu, Z. Liu, F. Wang, W. T. Li, et al., High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates, Lab on a Chip, vol. 15, pp. 680-689, 2015. [52]E. Wielhouwer, S. Ali, A. Al-Afandi, M. Blom, M. O. Riekerink, C. Poelma, et al., HG j. vanMil, J. Chicken, R. van ‘t Oever and MK Richardson, Lab Chip, vol. 11, pp. 1815-1824, 2011. [53]Y. Li, F. Yang, Z. Chen, L. Shi, B. Zhang, J. Pan, et al., Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity, PloS one, vol. 9, p. e94792, 2014. [54]A. Noori, P. R. Selvaganapathy, and J. Wilson, Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control, Lab on a Chip, vol. 9, pp. 3202-3211, 2009. [55]T. Bansal, J. Lenhart, T. Kim, C. Duan, and M. M. Maharbiz, Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces, Biomedical microdevices, vol. 11, pp. 633-641, 2009. [56]A. Funfak, A. Brösing, M. Brand, and J. M. Köhler, Micro fluid segment technique for screening and development studies on Danio rerio embryos, Lab on a Chip, vol. 7, pp. 1132-1138, 2007. [57]M. Erickstad, L. A. Hale, S. H. Chalasani, and A. Groisman, A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia, Lab on a Chip, vol. 15, pp. 857-866, 2015. [58]N. P. Macdonald, F. Zhu, C. Hall, J. Reboud, P. Crosier, E. Patton, et al., Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays, Lab on a Chip, vol. 16, pp. 291-297, 2016. [59]R. Candelier, M. S. Murmu, S. A. Romano, A. Jouary, G. Debrégeas, and G. Sumbre, A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish, Scientific reports, vol. 5, p. 12196, 2015. [60]F. Zhu, A. Wigh, T. Friedrich, A. Devaux, S. Bony, D. Nugegoda, et al., Automated lab-on-a-chip technology for fish embryo toxicity tests performed under continuous microperfusion (μFET), Environmental science & technology, vol. 49, pp. 14570-14578, 2015. [61]R. Samuel, R. Stephenson, P. Roy, R. Pryor, L. Zhou, J. L. Bonkowsky, et al., Microfluidic-aided genotyping of zebrafish in the first 48 h with 100% viability, Biomedical microdevices, vol. 17, p. 43, 2015. [62]C. Zheng, H. Zhou, X. Liu, Y. Pang, B. Zhang, and Y. Huang, Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos, Chemical Communications, vol. 50, pp. 981-984, 2014. [63]Y. Li, X. Yang, Z. Chen, B. Zhang, J. Pan, X. Li, et al., Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip, Biomicrofluidics, vol. 9, p. 024105, 2015. [64]E. M. Wielhouwer, S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, et al., Zebrafish embryo development in a microfluidic flow-through system, Lab on a Chip, vol. 11, pp. 1815-1824, 2011. [65]X. Lin, V. W. Li, S. Chen, C.-Y. Chan, S.-H. Cheng, and P. Shi, Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish, Biomicrofluidics, vol. 10, p. 024123, 2016. [66]A. R. Peimani, G. Zoidl, and P. Rezai, A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae, Biomicrofluidics, vol. 12, p. 014113, 2018. [67]M. Westerfield, The zebrafish book: a guide for the laboratory use of zebrafish, http://zfin. org/zf_info/zfbook/zfbk. html, 2000. [68]C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature methods, vol. 9, p. 671, 2012. [69]A. Pérez-Escudero, J. Vicente-Page, R. C. Hinz, S. Arganda, and G. G. De Polavieja, idTracker: tracking individuals in a group by automatic identification of unmarked animals, Nature methods, vol. 11, p. 743, 2014. [70]A. R. Peimani, G. Zoidl, and P. Rezai, A microfluidic device for quantitative investigation of zebrafish larvae’s rheotaxis, Biomedical microdevices, vol. 19, p. 99, 2017.
|