跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜秉修
研究生(外文):Bing-SiouDu
論文名稱:以流體力學分析斑馬魚於微流道內之行為
論文名稱(外文):Hydrodynamic investigation of zebrafish behaviors inthe microfluidics
指導教授:陳嘉元
指導教授(外文):Chia-Yuan Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:52
中文關鍵詞:斑馬魚幼魚微流體裝置流體力學回饋反應視動反應
外文關鍵詞:Zebrafish larvaeMicrofluidic devicesHydromechanical responseOptomotor response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在許多斑馬魚微流體裝置中,麻醉後的斑馬魚幼魚需要被傳送至測試區,而傳送的方式往往為透過機械性質的輸送方法來傳輸斑馬魚幼魚,透過這種傳輸方式,可能會對幼魚造成永久性的損傷,因此,若能透過非侵入式的運送方式輸送斑馬魚幼魚,便能防止幼魚受接觸而受到的損傷;由於視覺與流體力學的刺激容易影響斑馬魚幼魚的游動行為,因此若能利用幼魚本身的天生行為,使其能透過自身的移動而達到實驗的傳
輸目的,便可避免幼魚因強制傳輸而受到的傷害,本實驗框架使用前述的視覺與流體力學刺激控制斑馬魚幼魚,以達到迅速及有效的傳輸目標,為了能提供有效的流體力學刺激,流量會經調整以對斑馬魚幼魚的側線系統 (Lateral line)有所影響,與此同時,視覺刺激由電腦產生持續移動的黑白條紋光流 (Optic flow),以促使斑馬魚幼魚的視動行為 (Optomotor response)產生,最後透過不同條件搭配的實驗結果,可以觀察到兩種刺激模式的強度都對斑馬魚幼魚的行為有至關重要的影響,以 5 dpf (days-postfertilization)的斑馬魚幼魚來說,在流量 0.1 ml/min 下,並搭配 1 赫茲頻率的光流,其平均傳輸時間為 1.29 秒,相較於只提供流動刺激的傳輸時間,大約只有其三分之
一的時間,此實驗框架可與其他相關為流體裝置做整合,並且可以進一步用於藥物測試,傳輸未麻醉的斑馬魚幼魚至不同方向的測試區。
Most of microfluidics applied to larval zebrafish screening need to transport zebrafish larvae to the designated region of microfluidics. Conventionally, zebrafish larvae is transported by mechanical or manual means, resulting in the paramount damage to larval zebrafish. Therefore, through a noninvasive way, the damage caused by transportation could be eliminated or minimized. Due to visual cues and hydromechanical cues affecting the behavior of zebrafish strongly, we propose an experiment framework that would apply both cues to zebrafish, towards their transportation. In order to provide hydromechanical cues, flow rate would be adjusted to affect the lateral line of larval zebrafish meanwhile to provide visual cues, pattern composed of black and white stripes was produced by the computer animation that drives the optomotor response of zebrafish larvae. From the results, it was observed, both modalities play crucial role in the process of transportation. For 5 days-post fertilization zebrafish larvae, with flow rate of 0.3 ml/min along with the pattern of 1Hz temporal frequency, the average transportation time period is 1.07 This experiment frame work can be used to transport the non-anesthetized larval zebrafish into different section of microfluidics for drug testing.
摘要 I
Extended Abstract II
目錄 V
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1.1 研究背景 1
1.2 斑馬魚 (Danio rerio) 2
1.2.1 斑馬魚動物模型 2
1.2.2 斑馬魚行之趨流性 (Rheotaxis) 4
1.3 斑馬魚微流體裝置之發展 7
1.3.1 斑馬魚胚胎微流體裝置應用 10
1.3.2 斑馬魚幼魚微流體裝置應用 14
1.4 研究動機 17
1.5 研究目標 18
第2章 材料與研究方法 19
2.1 斑馬魚飼養與幼魚準備 19
2.2 微流體裝置的設計與製造 20
2.3 實驗平台架設與影像分析 24
2.4 實驗方式 26
2.4.1 斑馬魚幼魚在視覺與流動刺激下的直線位移實驗 26
2.4.2 流動刺激與視覺刺激對斑馬魚幼魚之影響強度實驗 27
2.4.3 斑馬魚幼魚在流動刺激下受視覺刺激之側向位移實驗 27
2.5 分析方法 28
2.5.1 幼魚移動時間量化分析方式 28
2.5.2 游動之幼魚動能參數分析 29
2.5.3 視覺與流動刺激影響強度分析 30
2.5.4 幼魚側向位移之位置分析 30
2.5.5 統計學分析 31
第3章 結果與討論 32
3.1 斑馬魚幼魚相應於視覺與流動刺激下的行為反應 32
3.2 游動幼魚之動能參數 35
3.3 斑馬魚幼魚對應於生長時間增加之行為變化 39
3.4 流動與視覺刺激對斑馬魚幼魚的影響強度 40
3.5 透過流動刺激與轉向光流傳輸斑馬魚幼魚至不同的測試位置 42
第4章 結論與未來發展 45
4.1 結論 45
4.2 未來發展 46
參考文獻 47
[1]E. C. Roosen-Runge, On the early development—bipolar differentiation and cleavage—of the zebra fish, Brachydanio rerio, The Biological Bulletin, vol. 75, pp. 119-133, 1938.
[2]G. Streisinger, F. Singer, C. Walker, D. Knauber, and N. Dower, Segregation analyses and gene-centromere distances in zebrafish, Genetics, vol. 112, pp. 311-319, 1986.
[3]K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature, vol. 496, p. 498, 2013.
[4]M. B. Orger and G. G. de Polavieja, Zebrafish behavior: opportunities and challenges, Annual review of neuroscience, vol. 40, pp. 125-147, 2017.
[5]K. B. Tierney, Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1812, pp. 381-389, 2011.
[6]J. Bakkers, Zebrafish as a model to study cardiac development and human cardiac disease, Cardiovascular research, vol. 91, pp. 279-288, 2011.
[7]E. Chen and S. C. Ekker, Zebrafish as a genomics research model, Current pharmaceutical biotechnology, vol. 5, pp. 409-413, 2004.
[8]K. Wang, J. Ma, M. He, G. Gao, H. Xu, J. Sang, et al., Toxicity assessments of near-infrared upconversion luminescent LaF3: Yb, Er in early development of zebrafish embryos, Theranostics, vol. 3, p. 258, 2013.
[9]C. Chakraborty, A. R. Sharma, G. Sharma, and S.-S. Lee, Zebrafish: A complete animal model to enumerate the nanoparticle toxicity, Journal of nanobiotechnology, vol. 14, p. 65, 2016.
[10]F. Yang, C. Gao, P. Wang, G.-J. Zhang, and Z. Chen, Fish-on-a-chip: microfluidics for zebrafish research, Lab on a Chip, vol. 16, pp. 1106-1125, 2016.
[11]K. Mani, T.-C. C. Chien, B. Panigrahi, and C.-Y. Chen, Manipulation of zebrafish’s orientation using artificial cilia in a microchannel with actively adaptive wall design, Scientific reports, vol. 6, p. 36385, 2016.
[12]D. Choudhury, D. van Noort, C. Iliescu, B. Zheng, K.-L. Poon, S. Korzh, et al., Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development, Lab on a Chip, vol. 12, pp. 892-900, 2012.
[13]T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Wählby, and M. F. Yanik, Fully automated cellular-resolution vertebrate screening platform with parallel animal processing, Lab on a Chip, vol. 12, pp. 711-716, 2012.
[14]R. Olive, S. Wolf, A. Dubreuil, V. Bormuth, G. Debrégeas, and R. Candelier, Rheotaxis of larval zebrafish: behavioral study of a multi-sensory process, Frontiers in systems neuroscience, vol. 10, p. 14, 2016.
[15]P. Oteiza, I. Odstrcil, G. Lauder, R. Portugues, and F. Engert, A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish, Nature, vol. 547, p. 445, 2017.
[16]K. Dooley and L. I. Zon, Zebrafish: a model system for the study of human disease, Current opinion in genetics & development, vol. 10, pp. 252-256, 2000.
[17]G. J. Lieschke and P. D. Currie, Animal models of human disease: zebrafish swim into view, Nature Reviews Genetics, vol. 8, p. 353, 2007.
[18]R. Willemsen, S. van’t Padje, J. C. van Swieten, and B. A. Oostra, Zebrafish (Danio rerio) as a model organism for dementia, in Animal Models of Dementia, ed: Springer, 2011, pp. 255-269.
[19]W. Alderton, a versatile in vivo model for drug safety assessment, Drug Discovery, p. 49, 2006.
[20]S. Saleem and R. R. Kannan, Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery, Cell death discovery, vol. 5, p. 45, 2018.
[21]J. Bak-Coleman, D. Smith, and S. Coombs, Going with, then against the flow: evidence against the optomotor hypothesis of fish rheotaxis, Animal Behaviour, vol. 107, pp. 7-17, 2015/09/01/ 2015.
[22]R. Portugues and F. Engert, The neural basis of visual behaviors in the larval zebrafish, Current opinion in neurobiology, vol. 19, pp. 644-647, 2009.
[23]S. S. Easter Jr and G. N. Nicola, The development of eye movements in the zebrafish (Danio rerio), Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, vol. 31, pp. 267-276, 1997.
[24]J. D. Burrill and S. S. Easter Jr, Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio), Journal of Comparative Neurology, vol. 346, pp. 583-600, 1994.
[25]S. C. Neuhauss, O. Biehlmaier, M. W. Seeliger, T. Das, K. Kohler, W. A. Harris, et al., Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish, Journal of Neuroscience, vol. 19, pp. 8603-8615, 1999.
[26]M. B. Orger, M. C. Smear, S. M. Anstis, and H. Baier, Perception of Fourier and non-Fourier motion by larval zebrafish, Nature neuroscience, vol. 3, p. 1128, 2000.
[27]E. Lyon, On rheotropism. I.—Rheotropism in fishes, American Journal of Physiology-Legacy Content, vol. 12, pp. 149-161, 1904.
[28]M. B. Orger and H. Baier, Channeling of red and green cone inputs to the zebrafish optomotor response, Visual neuroscience, vol. 22, pp. 275-281, 2005.
[29]J. Bilotta and S. Saszik, The zebrafish as a model visual system, International Journal of Developmental Neuroscience, vol. 19, pp. 621-629, 2001.
[30]S. C. Neuhauss, Behavioral genetic approaches to visual system development and function in zebrafish, Journal of neurobiology, vol. 54, pp. 148-160, 2003.
[31]A. Ghysen and C. Dambly-Chaudière, The lateral line microcosmos, Genes & development, vol. 21, pp. 2118-2130, 2007.
[32]W. K. Metcalfe, C. B. Kimmel, and E. Schabtach, Anatomy of the posterior lateral line system in young larvae of the zebrafish, Journal of Comparative Neurology, vol. 233, pp. 377-389, 1985.
[33]S. Dijkgraaf, The functioning and significance of the lateral‐line organs, Biological Reviews, vol. 38, pp. 51-105, 1963.
[34]A. Suli, G. M. Watson, E. W. Rubel, and D. W. Raible, Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells, PloS one, vol. 7, p. e29727, 2012.
[35]D. Hoekstra and J. Janssen, Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan, Environmental biology of fishes, vol. 12, pp. 111-117, 1985.
[36]J. C. Montgomery and A. R. Hamilton, Sensory contributions to nocturnal prey capture in the dwarf scorpion fish (Scorpaena papillosus), Marine & Freshwater Behaviour & Phy, vol. 30, pp. 209-223, 1997.
[37]J. H. Blaxter and L. A. Fuiman, Function of the free neuromasts of marine teleost larvae, in The mechanosensory lateral line, ed: Springer, 1989, pp. 481-499.
[38]K. E. Feitl, V. Ngo, and M. J. McHenry, Are fish less responsive to a flow stimulus when swimming?, Journal of Experimental Biology, vol. 213, pp. 3131-3137, 2010.
[39]B. L. Partridge and T. J. Pitcher, The sensory basis of fish schools: relative roles of lateral line and vision, Journal of comparative physiology, vol. 135, pp. 315-325, 1980.
[40]M. McHenry, K. Feitl, J. Strother, and W. Van Trump, Larval zebrafish rapidly sense the water flow of a predator's strike, Biology Letters, vol. 5, pp. 477-479, 2009.
[41]A. Khalili and P. Rezai, Microfluidic devices for embryonic and larval zebrafish studies, Briefings in functional genomics, 2019.
[42]P. K. Chan, C. C. Lin, and S. H. Cheng, Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos, BMC biotechnology, vol. 9, p. 11, 2009.
[43]C. C. Cosentino, B. L. Roman, I. A. Drummond, and N. A. Hukriede, Intravenous microinjections of zebrafish larvae to study acute kidney injury, JoVE (Journal of Visualized Experiments), p. e2079, 2010.
[44]F. Yang, Z. Chen, J. Pan, X. Li, J. Feng, and H. Yang, An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics, Biomicrofluidics, vol. 5, p. 024115, 2011.
[45]A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope, Development, vol. 139, pp. 3242-3247, 2012.
[46]Y.-c. Shen, D. Li, A. Al-Shoaibi, T. Bersano-Begey, H. Chen, S. Ali, et al., A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development, Zebrafish, vol. 6, pp. 201-213, 2009.
[47]J. Akagi, K. Khoshmanesh, B. Evans, C. J. Hall, K. E. Crosier, J. M. Cooper, et al., Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos, PloS one, vol. 7, p. e36630, 2012.
[48]J. Akagi, K. Khoshmanesh, C. J. Hall, J. M. Cooper, K. E. Crosier, P. S. Crosier, et al., Fish on chips: Microfluidic living embryo array for accelerated in vivo angiogenesis assays, Sensors and Actuators B: Chemical, vol. 189, pp. 11-20, 2013.
[49]W. Wang, X. Liu, D. Gelinas, B. Ciruna, and Y. Sun, A fully automated robotic system for microinjection of zebrafish embryos, PloS one, vol. 2, p. e862, 2007.
[50]L. L. Bischel, B. R. Mader, J. M. Green, A. Huttenlocher, and D. J. Beebe, Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging, Lab on a Chip, vol. 13, pp. 1732-1736, 2013.
[51]X. Lin, S. Wang, X. Yu, Z. Liu, F. Wang, W. T. Li, et al., High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates, Lab on a Chip, vol. 15, pp. 680-689, 2015.
[52]E. Wielhouwer, S. Ali, A. Al-Afandi, M. Blom, M. O. Riekerink, C. Poelma, et al., HG j. vanMil, J. Chicken, R. van ‘t Oever and MK Richardson, Lab Chip, vol. 11, pp. 1815-1824, 2011.
[53]Y. Li, F. Yang, Z. Chen, L. Shi, B. Zhang, J. Pan, et al., Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity, PloS one, vol. 9, p. e94792, 2014.
[54]A. Noori, P. R. Selvaganapathy, and J. Wilson, Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control, Lab on a Chip, vol. 9, pp. 3202-3211, 2009.
[55]T. Bansal, J. Lenhart, T. Kim, C. Duan, and M. M. Maharbiz, Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces, Biomedical microdevices, vol. 11, pp. 633-641, 2009.
[56]A. Funfak, A. Brösing, M. Brand, and J. M. Köhler, Micro fluid segment technique for screening and development studies on Danio rerio embryos, Lab on a Chip, vol. 7, pp. 1132-1138, 2007.
[57]M. Erickstad, L. A. Hale, S. H. Chalasani, and A. Groisman, A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia, Lab on a Chip, vol. 15, pp. 857-866, 2015.
[58]N. P. Macdonald, F. Zhu, C. Hall, J. Reboud, P. Crosier, E. Patton, et al., Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays, Lab on a Chip, vol. 16, pp. 291-297, 2016.
[59]R. Candelier, M. S. Murmu, S. A. Romano, A. Jouary, G. Debrégeas, and G. Sumbre, A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish, Scientific reports, vol. 5, p. 12196, 2015.
[60]F. Zhu, A. Wigh, T. Friedrich, A. Devaux, S. Bony, D. Nugegoda, et al., Automated lab-on-a-chip technology for fish embryo toxicity tests performed under continuous microperfusion (μFET), Environmental science & technology, vol. 49, pp. 14570-14578, 2015.
[61]R. Samuel, R. Stephenson, P. Roy, R. Pryor, L. Zhou, J. L. Bonkowsky, et al., Microfluidic-aided genotyping of zebrafish in the first 48 h with 100% viability, Biomedical microdevices, vol. 17, p. 43, 2015.
[62]C. Zheng, H. Zhou, X. Liu, Y. Pang, B. Zhang, and Y. Huang, Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos, Chemical Communications, vol. 50, pp. 981-984, 2014.
[63]Y. Li, X. Yang, Z. Chen, B. Zhang, J. Pan, X. Li, et al., Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip, Biomicrofluidics, vol. 9, p. 024105, 2015.
[64]E. M. Wielhouwer, S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, et al., Zebrafish embryo development in a microfluidic flow-through system, Lab on a Chip, vol. 11, pp. 1815-1824, 2011.
[65]X. Lin, V. W. Li, S. Chen, C.-Y. Chan, S.-H. Cheng, and P. Shi, Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish, Biomicrofluidics, vol. 10, p. 024123, 2016.
[66]A. R. Peimani, G. Zoidl, and P. Rezai, A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae, Biomicrofluidics, vol. 12, p. 014113, 2018.
[67]M. Westerfield, The zebrafish book: a guide for the laboratory use of zebrafish, http://zfin. org/zf_info/zfbook/zfbk. html, 2000.
[68]C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature methods, vol. 9, p. 671, 2012.
[69]A. Pérez-Escudero, J. Vicente-Page, R. C. Hinz, S. Arganda, and G. G. De Polavieja, idTracker: tracking individuals in a group by automatic identification of unmarked animals, Nature methods, vol. 11, p. 743, 2014.
[70]A. R. Peimani, G. Zoidl, and P. Rezai, A microfluidic device for quantitative investigation of zebrafish larvae’s rheotaxis, Biomedical microdevices, vol. 19, p. 99, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top