跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳咏晉
研究生(外文):Yong-JinWu
論文名稱:以形狀記憶合金及氣動致動器進行多入口型生物列印微流體噴頭之流量控制
論文名稱(外文):Flow control through shape-memory alloy and pneumatic-based actuators in a multi-inlet microfluidic nozzle head for biomaterial printing
指導教授:陳嘉元
指導教授(外文):Chia-Yuan Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:92
中文關鍵詞:形狀記憶合金氣動致動器微流體微粒子影像測速生物列印
外文關鍵詞:Shape-memory alloyPneumatic actuatorMicrofluidicsMicro-particle image velocimetry (μPIV)Bioprinting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去數十年來,微流體技術及裝置已被廣泛應用於不同的研究及工程領域。相較於傳統裝置,微流體裝置具有反應時間短、所需試劑少及耗能較少等優點。流量控制是微流體裝置的其中一項重要功能,且在同時處理多樣流體之裝置中尤其重要。本研究提出了兩種不同的微型致動器設計與其對應之多入口型微流體噴頭,並藉由致動器的作動來控制噴頭中兩側流體之流量,以改變噴頭出口處流體的組成比例。本研究所提出的第一項設計為形狀記憶合金致動器,形狀記憶合金在通電加熱後,可使致動器向前推進,進而擠壓流道壁面,而達到流量控制的效果。第二項設計則為氣動致動器,其可藉由增加氣室內壓力使其中薄膜產生變形,擠壓流道壁面,進而改變流體的流量。首先,本研究針對兩種致動器的反應時間及最大可作動位移進行了探討。隨後在致動器的流量控制效能的部分,則由一系列微粒子影像測速實驗進行詳盡的量測,並以兩側流量間的比例來表示其效能。在本研究中,兩種致動器所達到的最大兩側流量比例分別為1.74及1.22。為了未來能夠將此流量控制的概念應用於生物列印系統中,本研究亦做了許多額外的測試及展示。首先,本研究藉由額外的微粒子影像測速實驗來證實此多入口型噴頭設計有助於減少中央流體所受之平均剪應力。隨後,本研究也使用此噴頭實際進行水膠結構的列印,並展示了多種立體結構及分層結構。最後,本研究針對使用的水膠材料之生物相容性進行了探討。大鼠神經膠質瘤細胞被均勻種植於水膠結構之表面,經過二十四小時的培養後,附著於水膠表面的細胞仍具有極高的生存率,且細胞表面覆蓋率亦隨時間逐漸提升。根據這些結果顯示,本研究中所提出的列印材料將是為未來應用於生物3-D列印系統之良好候選。
Microfluidic devices pose serval advantages including less reaction time and less consumption in reagents and energy and have been employed into numerous research fields. Flow rate control is an important topic especially in microfluidic devices dealing with multiple materials. In this research, two new micro actuator designs were developed and integrated with corresponding multi-inlet microfluidic nozzle heads to achieve precise flow rate control over the composition of the extruded heterogeneous structures. The first actuator introduced is a shape-memory alloy actuator which impedes the channel wall and further change the flow rate when supplied with electric currents. The other actuator introduced is a PDMS pneumatic-based actuator which change the flow rate through deformation of the embedded thin film when applied with high pressure. Both actuators were quantified in terms of response time and maximum displacement achieved. Afterwards, a series of μPIV experiments were carried out to provide comprehensive investigations on flow rate controllability of proposed actuators in terms of flow rate ratio. In this research, maximum flow rate ratios of 1.74 and 1.22 were achieved. An additional μPIV experiment was performed as a proof of concept that the proposed multi-inlet nozzle is able to reduce shear stress induced to the central flow. Several hydrogel structures were printed and demonstrated using a remodeled bioprinter with multiple-layer filaments. Moreover, rat glioma (C6) cells were uniformly seeded on the surface of the hydrogel to investigate the biocompatibility of the hydrogel substrate. After 24 hours of incubation, the attached cells remained viable and good cell coverage rate were observed, which indicated that the presented material is an ideal candidate for future applications in bioprinting systems.
中文摘要 I
ABSTRACT III
ACKNOWLEDGEMENT V
Contents VI
List of Figures X
CHAPTER 1: INTRODUCTION 1
1.1 Literature review: Microfluidic devices and actuators 1
1.1.1 Backgrounds 1
1.1.2 Magnetic actuators 2
1.1.3 Piezoelectric actuators 4
1.1.4 Electric actuators 5
1.1.5 Thermal-mechanical actuators 7
1.1.6 Other types of actuators 9
1.2 Literature review: Bioprinting technologies 10
1.2.1 Backgrounds 11
1.2.2 Droplet-based bioprinting 12
1.2.3 Laser-assisted bioprinting 14
1.2.4 Extrusion-based bioprinting 15
1.3 Research motivation and objectives 17
CHAPTER 2: MATERIALS AND METHODS 19
2.1 Shape-memory alloy (SMA) actuator 19
2.1.1 Shape-memory alloy 19
2.1.2 Fabrication of SMA actuator 20
2.2 Pulse width modulation (PWM) based control system 23
2.2.1 Pulse width modulation (PWM) 23
2.2.2 Signal switching through potentiometer 25
2.2.3 Signal switching through serial monitor 28
2.3 Pneumatic-based actuator 30
2.4 Fabrication of multi-inlet microfluidic nozzle head 31
2.4.1 Replica molding process 32
2.4.2 Injection molding process 35
2.5 Flow rate quantification 39
2.5.1 Flow visualization and particle image velocimetry (PIV) 39
2.5.2 Micro-particle image velocimetry (μPIV) 42
2.5.3 Theoretical velocity distribution 44
2.5.4 Flow rate calculation 45
2.6 Concept of flow rate control through proposed actuators 49
2.7 Experiment configuration and analysis 50
2.7.1 Investigation of SMA actuator 50
2.7.2 Investigation of pneumatic-based actuator 52
2.7.3 μPIV experiment setups 54
2.7.4 μPIV analysis and flow rate quantification 56
2.7.5 Biomaterial printing 58
2.7.6 Cell growth on hydrogel 60
CHAPTER 3: RESULTS AND DISCUSSIONS 61
3.1 Performance of SMA actuator 61
3.1.1 PDMS wall displacement 61
3.1.2 Response time 62
3.1.3 Flow rate control through actuations 63
3.2 Performance of pneumatic-based actuator 68
3.2.1 Film deformation at different mixing ratios 69
3.2.2 Response time 71
3.2.3 Flow rate control through actuations 72
3.3 Discussions 76
3.4 Shear rate reduction through multi-inlet nozzle head 77
3.5 Hydrogel structure demonstrations 78
3.5.1 3-D structures with homogeneous material 78
3.5.2 2-D filament with heterogeneous materials 79
3.6 Cell growth on hydrogel 80
CHAPTER 4: CONCLUSIONS 83
CHAPTER 5: FUTURE WORK 85
REFERENCES 86
[1]J. Kilby, The integrated circuit's early history, Proceedings of the IEEE, vol. 88, pp. 109-111, 2000.
[2]V. J. Sieben, C. F. Floquet, I. R. Ogilvie, M. C. Mowlem, and H. Morgan, Microfluidic colourimetric chemical analysis system: Application to nitrite detection, Analytical Methods, vol. 2, pp. 484-491, 2010.
[3]E. Y. Basova and F. Foret, Droplet microfluidics in (bio) chemical analysis, Analyst, vol. 140, pp. 22-38, 2015.
[4]Q. Xu, M. Hashimoto, T. T. Dang, T. Hoare, D. S. Kohane, G. M. Whitesides, et al., Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery, Small, vol. 5, pp. 1575-1581, 2009.
[5]B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device, Lab on a Chip, vol. 5, pp. 401-406, 2005.
[6]L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, Single-cell analysis and sorting using droplet-based microfluidics, Nature protocols, vol. 8, p. 870, 2013.
[7]K. Abe, K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper, Analytical chemistry, vol. 80, pp. 6928-6934, 2008.
[8]K. Grenier, D. Dubuc, P.-E. Poleni, M. Kumemura, H. Toshiyoshi, T. Fujii, et al., Integrated broadband microwave and microfluidic sensor dedicated to bioengineering, IEEE Transactions on microwave theory and techniques, vol. 57, pp. 3246-3253, 2009.
[9]A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, Novel microwave microfluidic sensor using a microstrip split-ring resonator, IEEE Transactions on Microwave Theory and Techniques, vol. 62, pp. 679-688, 2014.
[10]M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, et al., An integrated design and fabrication strategy for entirely soft, autonomous robots, Nature, vol. 536, p. 451, 2016.
[11]M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, et al., Stretchable microfluidic radiofrequency antennas, Advanced materials, vol. 22, pp. 2749-2752, 2010.
[12]L. Liu, X. Chen, X. Niu, W. Wen, and P. Sheng, Electrorheological fluid-actuated microfluidic pump, Applied physics letters, vol. 89, p. 083505, 2006.
[13]T. Kokalj, Y. Park, M. Vencelj, M. Jenko, and L. P. Lee, Self-powered imbibing microfluidic pump by liquid encapsulation: SIMPLE, Lab on a Chip, vol. 14, pp. 4329-4333, 2014.
[14]B. Tavakol, M. Bozlar, C. Punckt, G. Froehlicher, H. A. Stone, I. A. Aksay, et al., Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps, Soft matter, vol. 10, pp. 4789-4794, 2014.
[15]Y. Gambin, C. Simonnet, V. VanDelinder, A. Deniz, and A. Groisman, Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics, Lab on a Chip, vol. 10, pp. 598-609, 2010.
[16]C.-C. Hong, J.-W. Choi, and C. H. Ahn, A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip, vol. 4, pp. 109-113, 2004.
[17]D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles, Microfluidics and nanofluidics, vol. 7, p. 727, 2009.
[18]T.-C. Kuo, D. M. Cannon, Y. Chen, J. J. Tulock, M. A. Shannon, J. V. Sweedler, et al., Gateable nanofluidic interconnects for multilayered microfluidic separation systems, Analytical Chemistry, vol. 75, pp. 1861-1867, 2003.
[19]Y.-C. Tan and A. P. Lee, Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab on a Chip, vol. 5, pp. 1178-1183, 2005.
[20]S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE transactions on electron devices, vol. 26, pp. 1880-1886, 1979.
[21]J.-W. Choi, K. W. Oh, A. Han, C. A. Wijayawardhana, C. Lannes, S. Bhansali, et al., Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection, Biomedical microdevices, vol. 3, pp. 191-200, 2001.
[22]C. Fu, Z. Rummler, and W. Schomburg, Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding, Journal of Micromechanics and microengineering, vol. 13, p. S96, 2003.
[23]E.-H. Yang, C. Lee, J. Mueller, and T. George, Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion, Journal of Microelectromechanical systems, vol. 13, pp. 799-807, 2004.
[24]D. C. Roberts, H. Li, J. L. Steyn, O. Yaglioglu, S. M. Spearing, M. A. Schmidt, et al., A piezoelectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems, Journal of Microelectromechanical Systems, vol. 12, pp. 81-92, 2003.
[25]J. M. Park, R. P. Taylor, A. T. Evans, T. R. Brosten, G. F. Nellis, S. A. Klein, et al., A piezoelectric microvalve for cryogenic applications, Journal of Micromechanics and Microengineering, vol. 18, p. 015023, 2007.
[26]X. Wu, S.-H. Kim, C.-H. Ji, and M. G. Allen, A solid hydraulically amplified piezoelectric microvalve, Journal of Micromechanics and Microengineering, vol. 21, p. 095003, 2011.
[27]T. Rogge, Z. Rummler, and W. Schomburg, Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process, Sensors and Actuators A: Physical, vol. 110, pp. 206-212, 2004.
[28]K. Sato and M. Shikida, An electrostatically actuated gas valve with an S-shaped film element, Journal of micromechanics and microengineering, vol. 4, p. 205, 1994.
[29]M. Shikida, K. Sato, S. Tanaka, Y. Kawamura, and Y. Fujisaki, Electrostatically driven gas valve with high conductance, Journal of Microelectromechanical Systems, vol. 3, pp. 76-80, 1994.
[30]L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, A novel bulk micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display, Journal of Microelectromechanical Systems, vol. 10, pp. 187-196, 2001.
[31]J. Schaible, J. Vollmer, R. Zengerle, H. Sandmaier, and T. Strobelt, Electrostatic microvalves in silicon with 2-way-function for industrial applications, in Transducers’ 01 Eurosensors XV, ed: Springer, 2001, pp. 900-903.
[32]W. van der Wijngaart, H. Ask, P. Enoksson, and G. Stemme, A high-stroke, high-pressure electrostatic actuator for valve applications, Sensors and Actuators A: Physical, vol. 100, pp. 264-271, 2002.
[33]P. K. Wong, T.-H. Wang, J. H. Deval, and C.-M. Ho, Electrokinetics in micro devices for biotechnology applications, IEEE/ASME transactions on mechatronics, vol. 9, pp. 366-376, 2004.
[34]B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink Jr, Voltage-addressable on/off microvalves for high-pressure microchip separations, Journal of Chromatography A, vol. 979, pp. 147-154, 2002.
[35]K. Pitchaimani, B. C. Sapp, A. Winter, A. Gispanski, T. Nishida, and Z. H. Fan, Manufacturable plastic microfluidic valves using thermal actuation, Lab on a Chip, vol. 9, pp. 3082-3087, 2009.
[36]M. Kohl, D. Dittmann, E. Quandt, B. Winzek, S. Miyazaki, and D. Allen, Shape memory microvalves based on thin films or rolled sheets, Materials Science and Engineering: A, vol. 273, pp. 784-788, 1999.
[37]M. Kohl, D. Dittmann, E. Quandt, and B. Winzek, Thin film shape memory microvalves with adjustable operation temperature, Sensors and Actuators A: Physical, vol. 83, pp. 214-219, 2000.
[38]D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, et al., Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, 2000.
[39]J. P. Merrill, J. E. Murray, J. H. Harrison, and W. R. Guild, Successful homotransplantation of the human kidney between identical twins, Journal of the American Medical Association, vol. 160, pp. 277-282, 1956.
[40]T. Desmet, E. Schacht, and P. Dubruel, Rapid Prototyping as an Elegant Production Tool for Polymeric Tissue Engineering Scaffolds: A Review, Tissue Engineering: Roles, Materials, and Applications, p. 141, 2008.
[41]Y. Zhao, R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro, Biofabrication, vol. 6, p. 035001, 2014.
[42]T. Xu, H. Kincaid, A. Atala, and J. J. Yoo, High-throughput production of single-cell microparticles using an inkjet printing technology, Journal of Manufacturing Science and Engineering, vol. 130, p. 021017, 2008.
[43]T. Xu, J. Olson, W. Zhao, A. Atala, J.-M. Zhu, and J. J. Yoo, Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging, Journal of Manufacturing Science and Engineering, vol. 130, p. 021013, 2008.
[44]M. M. Mohebi and J. R. Evans, A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics, Journal of combinatorial chemistry, vol. 4, pp. 267-274, 2002.
[45]X. Cui and T. Boland, Human microvasculature fabrication using thermal inkjet printing technology, Biomaterials, vol. 30, pp. 6221-6227, 2009.
[46]X. Cui, T. Boland, D. DD'Lima, and M. K Lotz, Thermal inkjet printing in tissue engineering and regenerative medicine, Recent patents on drug delivery & formulation, vol. 6, pp. 149-155, 2012.
[47]H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Physics reports, vol. 491, pp. 77-177, 2010.
[48]S. V. Murphy and A. Atala, 3D bioprinting of tissues and organs, Nat Biotechnol, vol. 32, pp. 773-85, Aug 2014.
[49]Y. Nishiyama, M. Nakamura, C. Henmi, K. Yamaguchi, S. Mochizuki, H. Nakagawa, et al., Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology, Journal of biomechanical engineering, vol. 131, p. 035001, 2009.
[50]L. Gasperini, D. Maniglio, A. Motta, and C. Migliaresi, An electrohydrodynamic bioprinter for alginate hydrogels containing living cells, Tissue engineering part C: Methods, vol. 21, pp. 123-132, 2014.
[51]A. B. Dababneh and I. T. Ozbolat, Bioprinting Technology: A Current State-of-the-Art Review, Journal of Manufacturing Science and Engineering, vol. 136, p. 061016, 2014.
[52]L. Ning and X. Chen, A brief review of extrusion‐based tissue scaffold bio‐printing, Biotechnology journal, vol. 12, p. 1600671, 2017.
[53]X. Chen, Modeling of rotary screw fluid dispensing processes, Journal of electronic packaging, vol. 129, pp. 172-178, 2007.
[54]A. Khoda, I. T. Ozbolat, and B. Koc, Engineered tissue scaffolds with variational porous architecture, Journal of Biomechanical Engineering, vol. 133, p. 011001, 2011.
[55]K. E. Wilkes and P. K. Liaw, The fatigue behavior of shape-memory alloys, JOM, vol. 52, pp. 45-51, 2000.
[56]J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A, vol. 273, pp. 134-148, 1999.
[57]L. Sun and W. Huang, Nature of the multistage transformation in shape memory alloys upon heating, Metal Science and Heat Treatment, vol. 51, pp. 573-578, 2009.
[58]I. Mihálcz, Fundamental characteristics and design method for nickel-titanium shape memory alloy, Periodica Polytechnica Mechanical Engineering, vol. 45, pp. 75-86, 2001.
[59]J. Balta, J. Simpson, V. Michaud, J.-A. Månson, and J. Schrooten, Embedded shape memory alloys confer aerodynamic profile adaptivity, Smart Materials Bulletin, vol. 2001, pp. 8-12, 2001.
[60]A. P. Jardine, J. S. Flanagan, C. A. Martin, and B. F. Carpenter, Smart wing shape memory alloy actuator design and performance, in Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies, 1997, pp. 48-56.
[61]T. L. Turner, R. D. Buehrle, R. J. Cano, and G. A. Fleming, Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept, Journal of Intelligent Material Systems and Structures, vol. 17, pp. 483-497, 2006.
[62]M. A. Savi, A. Paiva, A. P. Baeta-Neves, and P. M. Pacheco, Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model, Journal of Intelligent Material Systems and Structures, vol. 13, pp. 261-273, 2002.
[63]J. Xiong, Y. Li, X. Wang, P. Hodgson, and C. Wen, Titanium–nickel shape memory alloy foams for bone tissue engineering, Journal of the mechanical behavior of biomedical materials, vol. 1, pp. 269-273, 2008.
[64]F. Butera, A. Coda, G. Vergani, and S. G. SpA, Shape memory actuators for automotive applications, Nanotec IT newsletter. Roma: AIRI/nanotec IT, pp. 12-6, 2007.
[65]H. Kahn, M. Huff, and A. Heuer, The TiNi shape-memory alloy and its applications for MEMS, Journal of Micromechanics and Microengineering, vol. 8, p. 213, 1998.
[66]L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, et al., Stimulus-responsive shape memory materials: a review, Materials & Design, vol. 33, pp. 577-640, 2012.
[67]T. Bormann, S. Friess, M. de Wild, R. Schumacher, G. Schulz, and B. Müller, Determination of strain fields in porous shape memory alloys using micro-computed tomography, in Developments in X-Ray Tomography VII, 2010, p. 78041M.
[68]D. C. Lagoudas, Shape memory alloys: modeling and engineering applications: Springer, 2008.
[69]M. Barr, Pulse width modulation, Embedded Systems Programming, vol. 14, pp. 103-104, 2001.
[70]R. J. Martinuzzi and B. Havel, Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement, Journal of fluids engineering, vol. 122, pp. 24-31, 2000.
[71]M. J. Hargather and G. S. Settles, Retroreflective shadowgraph technique for large-scale flow visualization, Applied optics, vol. 48, pp. 4449-4457, 2009.
[72]N. Zhuang, F. S. Alvi, M. B. Alkislar, and C. Shih, Supersonic cavity flows and their control, AIAA journal, vol. 44, pp. 2118-2128, 2006.
[73]C. T. Johansen and G. Ciccarelli, Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel, Combustion and Flame, vol. 156, pp. 405-416, 2009.
[74]C. A. Hunter, Experimental investigation of separated nozzle flows, Journal of propulsion and power, vol. 20, pp. 527-532, 2004.
[75]B. Mosier, J. Molho, and J. Santiago, Photobleached-fluorescence imaging of microflows, Experiments in Fluids, vol. 33, pp. 545-554, 2002.
[76]C. Gendrich, M. Koochesfahani, and D. Nocera, Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule, Experiments in Fluids, vol. 23, pp. 361-372, 1997.
[77]C. Sieverding and P. Van Den Bosche, The use of coloured smoke to visualize secondary flows in a turbine-blade cascade, Journal of Fluid Mechanics, vol. 134, pp. 85-89, 1983.
[78]C.-C. Wang, J. Lo, Y.-T. Lin, and C.-S. Wei, Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application, International Journal of Heat and Mass Transfer, vol. 45, pp. 3803-3815, 2002.
[79]W. Kowalczyk, B. E. Zima, and A. Delgado, A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms, Experiments in fluids, vol. 43, pp. 147-150, 2007.
[80]R. J. Adrian, Twenty years of particle image velocimetry, Experiments in fluids, vol. 39, pp. 159-169, 2005.
[81]M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, Particle image velocimetry: a practical guide: Springer, 2018.
[82]K. D. Jensen, Flow measurements, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp. 400-419, 2004.
[83]C. D. Meinhart, S. T. Wereley, and J. G. Santiago, PIV measurements of a microchannel flow, Experiments in fluids, vol. 27, pp. 414-419, 1999.
[84]R. Lindken, M. Rossi, S. Große, and J. Westerweel, Micro-particle image velocimetry (µPIV): recent developments, applications, and guidelines, Lab on a Chip, vol. 9, pp. 2551-2567, 2009.
[85]K. Sharp and R. Adrian, On flow-blocking particle structures in microtubes, Microfluidics and Nanofluidics, vol. 1, pp. 376-380, 2005.
[86]J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Experiments in fluids, vol. 25, pp. 316-319, 1998.
[87]R. Lima, S. Wada, K.-i. Tsubota, and T. Yamaguchi, Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel, Measurement Science and Technology, vol. 17, p. 797, 2006.
[88]B. Duan, L. A. Hockaday, K. H. Kang, and J. T. Butcher, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, Journal of biomedical materials research Part A, vol. 101, pp. 1255-1264, 2013.
[89]K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, and A. Ovsianikov, Bioink properties before, during and after 3D bioprinting, Biofabrication, vol. 8, p. 032002, 2016.
[90]A. Blaeser, D. F. Duarte Campos, U. Puster, W. Richtering, M. M. Stevens, and H. Fischer, Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity, Adv Healthc Mater, vol. 5, pp. 326-33, Feb 4 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top