|
[1]J. Kilby, The integrated circuit's early history, Proceedings of the IEEE, vol. 88, pp. 109-111, 2000. [2]V. J. Sieben, C. F. Floquet, I. R. Ogilvie, M. C. Mowlem, and H. Morgan, Microfluidic colourimetric chemical analysis system: Application to nitrite detection, Analytical Methods, vol. 2, pp. 484-491, 2010. [3]E. Y. Basova and F. Foret, Droplet microfluidics in (bio) chemical analysis, Analyst, vol. 140, pp. 22-38, 2015. [4]Q. Xu, M. Hashimoto, T. T. Dang, T. Hoare, D. S. Kohane, G. M. Whitesides, et al., Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery, Small, vol. 5, pp. 1575-1581, 2009. [5]B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device, Lab on a Chip, vol. 5, pp. 401-406, 2005. [6]L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, Single-cell analysis and sorting using droplet-based microfluidics, Nature protocols, vol. 8, p. 870, 2013. [7]K. Abe, K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper, Analytical chemistry, vol. 80, pp. 6928-6934, 2008. [8]K. Grenier, D. Dubuc, P.-E. Poleni, M. Kumemura, H. Toshiyoshi, T. Fujii, et al., Integrated broadband microwave and microfluidic sensor dedicated to bioengineering, IEEE Transactions on microwave theory and techniques, vol. 57, pp. 3246-3253, 2009. [9]A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, Novel microwave microfluidic sensor using a microstrip split-ring resonator, IEEE Transactions on Microwave Theory and Techniques, vol. 62, pp. 679-688, 2014. [10]M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, et al., An integrated design and fabrication strategy for entirely soft, autonomous robots, Nature, vol. 536, p. 451, 2016. [11]M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, et al., Stretchable microfluidic radiofrequency antennas, Advanced materials, vol. 22, pp. 2749-2752, 2010. [12]L. Liu, X. Chen, X. Niu, W. Wen, and P. Sheng, Electrorheological fluid-actuated microfluidic pump, Applied physics letters, vol. 89, p. 083505, 2006. [13]T. Kokalj, Y. Park, M. Vencelj, M. Jenko, and L. P. Lee, Self-powered imbibing microfluidic pump by liquid encapsulation: SIMPLE, Lab on a Chip, vol. 14, pp. 4329-4333, 2014. [14]B. Tavakol, M. Bozlar, C. Punckt, G. Froehlicher, H. A. Stone, I. A. Aksay, et al., Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps, Soft matter, vol. 10, pp. 4789-4794, 2014. [15]Y. Gambin, C. Simonnet, V. VanDelinder, A. Deniz, and A. Groisman, Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics, Lab on a Chip, vol. 10, pp. 598-609, 2010. [16]C.-C. Hong, J.-W. Choi, and C. H. Ahn, A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip, vol. 4, pp. 109-113, 2004. [17]D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles, Microfluidics and nanofluidics, vol. 7, p. 727, 2009. [18]T.-C. Kuo, D. M. Cannon, Y. Chen, J. J. Tulock, M. A. Shannon, J. V. Sweedler, et al., Gateable nanofluidic interconnects for multilayered microfluidic separation systems, Analytical Chemistry, vol. 75, pp. 1861-1867, 2003. [19]Y.-C. Tan and A. P. Lee, Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab on a Chip, vol. 5, pp. 1178-1183, 2005. [20]S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE transactions on electron devices, vol. 26, pp. 1880-1886, 1979. [21]J.-W. Choi, K. W. Oh, A. Han, C. A. Wijayawardhana, C. Lannes, S. Bhansali, et al., Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection, Biomedical microdevices, vol. 3, pp. 191-200, 2001. [22]C. Fu, Z. Rummler, and W. Schomburg, Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding, Journal of Micromechanics and microengineering, vol. 13, p. S96, 2003. [23]E.-H. Yang, C. Lee, J. Mueller, and T. George, Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion, Journal of Microelectromechanical systems, vol. 13, pp. 799-807, 2004. [24]D. C. Roberts, H. Li, J. L. Steyn, O. Yaglioglu, S. M. Spearing, M. A. Schmidt, et al., A piezoelectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems, Journal of Microelectromechanical Systems, vol. 12, pp. 81-92, 2003. [25]J. M. Park, R. P. Taylor, A. T. Evans, T. R. Brosten, G. F. Nellis, S. A. Klein, et al., A piezoelectric microvalve for cryogenic applications, Journal of Micromechanics and Microengineering, vol. 18, p. 015023, 2007. [26]X. Wu, S.-H. Kim, C.-H. Ji, and M. G. Allen, A solid hydraulically amplified piezoelectric microvalve, Journal of Micromechanics and Microengineering, vol. 21, p. 095003, 2011. [27]T. Rogge, Z. Rummler, and W. Schomburg, Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process, Sensors and Actuators A: Physical, vol. 110, pp. 206-212, 2004. [28]K. Sato and M. Shikida, An electrostatically actuated gas valve with an S-shaped film element, Journal of micromechanics and microengineering, vol. 4, p. 205, 1994. [29]M. Shikida, K. Sato, S. Tanaka, Y. Kawamura, and Y. Fujisaki, Electrostatically driven gas valve with high conductance, Journal of Microelectromechanical Systems, vol. 3, pp. 76-80, 1994. [30]L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, A novel bulk micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display, Journal of Microelectromechanical Systems, vol. 10, pp. 187-196, 2001. [31]J. Schaible, J. Vollmer, R. Zengerle, H. Sandmaier, and T. Strobelt, Electrostatic microvalves in silicon with 2-way-function for industrial applications, in Transducers’ 01 Eurosensors XV, ed: Springer, 2001, pp. 900-903. [32]W. van der Wijngaart, H. Ask, P. Enoksson, and G. Stemme, A high-stroke, high-pressure electrostatic actuator for valve applications, Sensors and Actuators A: Physical, vol. 100, pp. 264-271, 2002. [33]P. K. Wong, T.-H. Wang, J. H. Deval, and C.-M. Ho, Electrokinetics in micro devices for biotechnology applications, IEEE/ASME transactions on mechatronics, vol. 9, pp. 366-376, 2004. [34]B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink Jr, Voltage-addressable on/off microvalves for high-pressure microchip separations, Journal of Chromatography A, vol. 979, pp. 147-154, 2002. [35]K. Pitchaimani, B. C. Sapp, A. Winter, A. Gispanski, T. Nishida, and Z. H. Fan, Manufacturable plastic microfluidic valves using thermal actuation, Lab on a Chip, vol. 9, pp. 3082-3087, 2009. [36]M. Kohl, D. Dittmann, E. Quandt, B. Winzek, S. Miyazaki, and D. Allen, Shape memory microvalves based on thin films or rolled sheets, Materials Science and Engineering: A, vol. 273, pp. 784-788, 1999. [37]M. Kohl, D. Dittmann, E. Quandt, and B. Winzek, Thin film shape memory microvalves with adjustable operation temperature, Sensors and Actuators A: Physical, vol. 83, pp. 214-219, 2000. [38]D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, et al., Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, 2000. [39]J. P. Merrill, J. E. Murray, J. H. Harrison, and W. R. Guild, Successful homotransplantation of the human kidney between identical twins, Journal of the American Medical Association, vol. 160, pp. 277-282, 1956. [40]T. Desmet, E. Schacht, and P. Dubruel, Rapid Prototyping as an Elegant Production Tool for Polymeric Tissue Engineering Scaffolds: A Review, Tissue Engineering: Roles, Materials, and Applications, p. 141, 2008. [41]Y. Zhao, R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro, Biofabrication, vol. 6, p. 035001, 2014. [42]T. Xu, H. Kincaid, A. Atala, and J. J. Yoo, High-throughput production of single-cell microparticles using an inkjet printing technology, Journal of Manufacturing Science and Engineering, vol. 130, p. 021017, 2008. [43]T. Xu, J. Olson, W. Zhao, A. Atala, J.-M. Zhu, and J. J. Yoo, Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging, Journal of Manufacturing Science and Engineering, vol. 130, p. 021013, 2008. [44]M. M. Mohebi and J. R. Evans, A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics, Journal of combinatorial chemistry, vol. 4, pp. 267-274, 2002. [45]X. Cui and T. Boland, Human microvasculature fabrication using thermal inkjet printing technology, Biomaterials, vol. 30, pp. 6221-6227, 2009. [46]X. Cui, T. Boland, D. DD'Lima, and M. K Lotz, Thermal inkjet printing in tissue engineering and regenerative medicine, Recent patents on drug delivery & formulation, vol. 6, pp. 149-155, 2012. [47]H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Physics reports, vol. 491, pp. 77-177, 2010. [48]S. V. Murphy and A. Atala, 3D bioprinting of tissues and organs, Nat Biotechnol, vol. 32, pp. 773-85, Aug 2014. [49]Y. Nishiyama, M. Nakamura, C. Henmi, K. Yamaguchi, S. Mochizuki, H. Nakagawa, et al., Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology, Journal of biomechanical engineering, vol. 131, p. 035001, 2009. [50]L. Gasperini, D. Maniglio, A. Motta, and C. Migliaresi, An electrohydrodynamic bioprinter for alginate hydrogels containing living cells, Tissue engineering part C: Methods, vol. 21, pp. 123-132, 2014. [51]A. B. Dababneh and I. T. Ozbolat, Bioprinting Technology: A Current State-of-the-Art Review, Journal of Manufacturing Science and Engineering, vol. 136, p. 061016, 2014. [52]L. Ning and X. Chen, A brief review of extrusion‐based tissue scaffold bio‐printing, Biotechnology journal, vol. 12, p. 1600671, 2017. [53]X. Chen, Modeling of rotary screw fluid dispensing processes, Journal of electronic packaging, vol. 129, pp. 172-178, 2007. [54]A. Khoda, I. T. Ozbolat, and B. Koc, Engineered tissue scaffolds with variational porous architecture, Journal of Biomechanical Engineering, vol. 133, p. 011001, 2011. [55]K. E. Wilkes and P. K. Liaw, The fatigue behavior of shape-memory alloys, JOM, vol. 52, pp. 45-51, 2000. [56]J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A, vol. 273, pp. 134-148, 1999. [57]L. Sun and W. Huang, Nature of the multistage transformation in shape memory alloys upon heating, Metal Science and Heat Treatment, vol. 51, pp. 573-578, 2009. [58]I. Mihálcz, Fundamental characteristics and design method for nickel-titanium shape memory alloy, Periodica Polytechnica Mechanical Engineering, vol. 45, pp. 75-86, 2001. [59]J. Balta, J. Simpson, V. Michaud, J.-A. Månson, and J. Schrooten, Embedded shape memory alloys confer aerodynamic profile adaptivity, Smart Materials Bulletin, vol. 2001, pp. 8-12, 2001. [60]A. P. Jardine, J. S. Flanagan, C. A. Martin, and B. F. Carpenter, Smart wing shape memory alloy actuator design and performance, in Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies, 1997, pp. 48-56. [61]T. L. Turner, R. D. Buehrle, R. J. Cano, and G. A. Fleming, Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept, Journal of Intelligent Material Systems and Structures, vol. 17, pp. 483-497, 2006. [62]M. A. Savi, A. Paiva, A. P. Baeta-Neves, and P. M. Pacheco, Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model, Journal of Intelligent Material Systems and Structures, vol. 13, pp. 261-273, 2002. [63]J. Xiong, Y. Li, X. Wang, P. Hodgson, and C. Wen, Titanium–nickel shape memory alloy foams for bone tissue engineering, Journal of the mechanical behavior of biomedical materials, vol. 1, pp. 269-273, 2008. [64]F. Butera, A. Coda, G. Vergani, and S. G. SpA, Shape memory actuators for automotive applications, Nanotec IT newsletter. Roma: AIRI/nanotec IT, pp. 12-6, 2007. [65]H. Kahn, M. Huff, and A. Heuer, The TiNi shape-memory alloy and its applications for MEMS, Journal of Micromechanics and Microengineering, vol. 8, p. 213, 1998. [66]L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, et al., Stimulus-responsive shape memory materials: a review, Materials & Design, vol. 33, pp. 577-640, 2012. [67]T. Bormann, S. Friess, M. de Wild, R. Schumacher, G. Schulz, and B. Müller, Determination of strain fields in porous shape memory alloys using micro-computed tomography, in Developments in X-Ray Tomography VII, 2010, p. 78041M. [68]D. C. Lagoudas, Shape memory alloys: modeling and engineering applications: Springer, 2008. [69]M. Barr, Pulse width modulation, Embedded Systems Programming, vol. 14, pp. 103-104, 2001. [70]R. J. Martinuzzi and B. Havel, Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement, Journal of fluids engineering, vol. 122, pp. 24-31, 2000. [71]M. J. Hargather and G. S. Settles, Retroreflective shadowgraph technique for large-scale flow visualization, Applied optics, vol. 48, pp. 4449-4457, 2009. [72]N. Zhuang, F. S. Alvi, M. B. Alkislar, and C. Shih, Supersonic cavity flows and their control, AIAA journal, vol. 44, pp. 2118-2128, 2006. [73]C. T. Johansen and G. Ciccarelli, Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel, Combustion and Flame, vol. 156, pp. 405-416, 2009. [74]C. A. Hunter, Experimental investigation of separated nozzle flows, Journal of propulsion and power, vol. 20, pp. 527-532, 2004. [75]B. Mosier, J. Molho, and J. Santiago, Photobleached-fluorescence imaging of microflows, Experiments in Fluids, vol. 33, pp. 545-554, 2002. [76]C. Gendrich, M. Koochesfahani, and D. Nocera, Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule, Experiments in Fluids, vol. 23, pp. 361-372, 1997. [77]C. Sieverding and P. Van Den Bosche, The use of coloured smoke to visualize secondary flows in a turbine-blade cascade, Journal of Fluid Mechanics, vol. 134, pp. 85-89, 1983. [78]C.-C. Wang, J. Lo, Y.-T. Lin, and C.-S. Wei, Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application, International Journal of Heat and Mass Transfer, vol. 45, pp. 3803-3815, 2002. [79]W. Kowalczyk, B. E. Zima, and A. Delgado, A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms, Experiments in fluids, vol. 43, pp. 147-150, 2007. [80]R. J. Adrian, Twenty years of particle image velocimetry, Experiments in fluids, vol. 39, pp. 159-169, 2005. [81]M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, Particle image velocimetry: a practical guide: Springer, 2018. [82]K. D. Jensen, Flow measurements, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp. 400-419, 2004. [83]C. D. Meinhart, S. T. Wereley, and J. G. Santiago, PIV measurements of a microchannel flow, Experiments in fluids, vol. 27, pp. 414-419, 1999. [84]R. Lindken, M. Rossi, S. Große, and J. Westerweel, Micro-particle image velocimetry (µPIV): recent developments, applications, and guidelines, Lab on a Chip, vol. 9, pp. 2551-2567, 2009. [85]K. Sharp and R. Adrian, On flow-blocking particle structures in microtubes, Microfluidics and Nanofluidics, vol. 1, pp. 376-380, 2005. [86]J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Experiments in fluids, vol. 25, pp. 316-319, 1998. [87]R. Lima, S. Wada, K.-i. Tsubota, and T. Yamaguchi, Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel, Measurement Science and Technology, vol. 17, p. 797, 2006. [88]B. Duan, L. A. Hockaday, K. H. Kang, and J. T. Butcher, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, Journal of biomedical materials research Part A, vol. 101, pp. 1255-1264, 2013. [89]K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, and A. Ovsianikov, Bioink properties before, during and after 3D bioprinting, Biofabrication, vol. 8, p. 032002, 2016. [90]A. Blaeser, D. F. Duarte Campos, U. Puster, W. Richtering, M. M. Stevens, and H. Fischer, Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity, Adv Healthc Mater, vol. 5, pp. 326-33, Feb 4 2016.
|