跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 20:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昱成
研究生(外文):Yu-ChenWu
論文名稱:Laplace/Adomian混合解法應用於非牛頓冪次律流體流經楔型板之邊界層流受磁場影響之熱流特性研究
論文名稱(外文):Applications of the Hybrid Laplace Adomian Decomposition Method to Non-Newtonian Power-Law Fluid Falkner-Skan Boundary Layer Flow and Heat Transfer Under Magnetic Field Effect
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Chao-Kuang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:冪次律流體磁流體力學楔型板流熵產生率Adomian分解法
外文關鍵詞:Power-Law FluidMagnetohydrodynamic FlowWedge FlowEntropy Generation RateAdomian Decomposition Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討磁場作用下非牛頓流體通過楔型板之邊界層流、熱傳與熵產生率問題。非牛頓流體為導電的冪次律流體,以Falkner-Skan方程式描述流體的運動,磁場與楔型板表面溫度隨著位置變化。透過相似轉換 (Similarity Transformation) 將控制方程式由非線性偏微分方程式轉換為非線性常微分方程式,並引入與冪次律流體的流動特性、磁場、楔型板角度和溫度相關的物理參數。
使用Laplace Adomian混合解法(LADM-Padé)求解控制方程式,此方法結合Adomian分解法與Laplace轉換,用於求解非線性微分方程式,其結果為一截斷級數,以Padé近似達到收斂。
數值結果為速度與溫度的分布曲線,熵產生率由所得的溫度與速度帶入計算。本文探討影響流體速度、溫度與熵產生率的各項物理參數,並計算表面摩擦係數與局部紐賽數與現有文獻進行比較。
The problem of magnetohydrodynamic flow, heat transfer and entropy generation rate for a non-Newtonian power-law fluid past a stationary wedge in the presence of a transverse magnetic field is analyzed. The Falkner-Skan equation is applied for the wedge flow. The magnetic field density and surface temperature of the wedge are assumed to vary with the distance from the origin. The governing equations are transformed to nonlinear ordinary differential equations by similarity transformation and several physical parameters related to flow behavior of power-law fluid, magnetic field, angle and surface temperature are introduced.
The governing equations are solved numerically by Hybrid Laplace Adomian Decomposition Method. Laplace Adomian Decomposition Method (LADM) combines the Laplace transformation and Adomian Decomposition Method and is used to solve the nonlinear differential equations. In order to make the result of LADM converge, Padé approximant is employed and the method is named Hybrid Laplace Adomian Decomposition Method.
The results of this study concerns with the velocity and temperature profiles. The Second-law of characteristic of the system is considered and computed from the velocity and temperature. Parameters effecting velocity, temperature and entropy generation rate will be discussed in this study. The local skin-friction coefficient and the local Nusselt number are also tabulated and analyzed.
中文摘要 I
Extended Abstract II
誌謝 X
目錄 XI
表目錄 XIV
圖目錄 XV
符號說明 XVIII
第一章、 緒論 1
1-1 研究動機及背景 1
1-2 文獻回顧 3
1-3 本文架構 5
第二章、 數值方法 6
2-1 Adomian分解法 7
2-1.1 Adomian多項式 9
2-1.2 Modified Adomian 分解法 11
2-1.3 Laplace Adomian分解法 12
2-2 Padé近似 14
第三章、 理論分析 15
3-1 基本假設與數學方程式 15
3-1.1 冪次律流體 17
3-1.2 磁場與動量方程式 17
3-2 相似轉換 18
3-3 熵產生率 21
第四章、 數值方法結果 24
4-1 Laplace Adomian分解法 24
4-2 Padé 近似 29
4-3 討論 31
4-3.1 LADM項數設定 31
4-3.2 Padé近似設定 34
4-3.3 數值結果準確性比較 35
第五章、 結果與討論 38
5-1 流場分析 38
5-1.1 流動特性指數n對流場的影響 38
5-1.2 速度指數參數m對流場的影響 40
5-1.3 磁性參數Mn對流場的影響 42
5-2 熱傳分析 44
5-2.1 流動特性指數n對熱傳的影響 44
5-2.2 速度指數參數m對熱傳的影響 45
5-2.3 磁性參數Mn對熱傳的影響 47
5-2.4 修正普朗特數Npr對熱傳的影響 47
5-2.5 溫度指數參數r對熱傳的影響 50
5-3 表面摩擦係數與局部紐賽數 52
5-4 熱力學第二定律分析 55
5-4.1熵產生數(Entropy Generation Number) 56
5-4.2比贊數(Bejan number) 62
第六章、 結論與建議 69
6-1 結論 69
6-2 未來研究方向與建議 72
參考文獻 73
[1] T. G. Howell, D. R. Jeng, and K. J. Dewitt, “Momentum and Heat Transfer on a Continuous Moving Surface in a Power Law Fluid, Int. J. Heat Mass Transfer, Vol. 40, No. 8, pp. 1853-1861, 1997.
[2] T. R. Roy, “On Boundary Layer Flow of a Power Law Liquid Past a Wedge, Indian J. pure appl. Math., 11(11), pp. 1540-1547, 1980.
[3] W. A. Khan, and R. S. R. Gorla, “Mixed Convection of Power-Law Fluids along a Vertical Wedge with Convective Boundary Condition in a Porous Medium, Journal of Mechanical Science and Technology, 24(9), pp. 1919-1925, 2010.
[4] G. Bognár, “On Similarity Solutions of MHD Flow over a Nonlinear Stretching Surface in Non-Newtonian Power-Law Fluid, Electronic Journal of Qualitative Theory of Differential Equations, Proc. 10th Coll. Qualitative Theory of Diff. Equ., No. 6, pp. 1-12, 2016.
[5] K. V. Prasad, D. Pal, and P. S. Datti, “MHD Power-Law Fluid Flow and Heat Transfer over a Non-Isothermal Stretching Sheet, Commun Nonlinear Sci Numer Simulat, Vol. 14, Issue 5, pp. 2178-2189, 2009.
[6] K. V. Prasad, S. R. Santhi, and P. S. Datti, “Non-Newtonian Power-Law Fluid Flow and Heat Transfer over a Non-Linearly Stretching Surface, Applied Mathematics, Vol. 3, No. 5, pp. 425-435, 2012.
[7] S. Jothimani, and T. Vidhya, “Mixed Convection of Non-Newtonian Fluid Flow and Heat Transfer over a Non-Linearly Stretching Surface, Int. J. Adv. Appl. Math. and Mech., 3(1), pp. 28-35, 2015.
[8] N. Kishan, and P. Kavitha, “MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation, Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267-274, 2014.
[9] N. Kishan, and P. Kavitha, “Magneto-Hydro Dynamic Flow and Heat Transfer of Non-Newtonian Power-Law Fluid over a Non-Linear Stretching Surface with Viscous Dissipation, Int. J. of Applied Mechanics and Engineering, Vol.19, No.2, pp.259-273, 2014.
[10] Y. G. Sapunkov, “Self-Similar Solutions Of Non-Newtonian Fluid Boundary Layer In MHD, Mekhanika Zhidkosti i Gaze, Vol. 2, No. 6, pp. 77-82, 1967.
[11] S. Mahmud, and R. A. Fraser, “The Second Law Analysis in Fundamental Convective Heat Transfer Problems, International Journal of Thermal Sciences, 42, pp. 177-186, 2003.
[12] J. A. Esfahani, and M. M. Jafarian, “Entropy Generation Analysis of a Flat Plate Boundary Layer with Various Solution Methods, Scientia Iranica, Vol. 12, No. 2, pp. 233-240, 2005.
[13] A. Malvandi, D. D. Ganji, F. Hedayati, M. H. Kaffash, and M. Jamshidi, “Series Solution of Entropy Generation toward an Isothermal Flat Plate, Thermal Science, Vol. 16, No. 5, pp. 1289-1295, 2012.
[14] W. A. Khan, and R. S. R. Gorla, “Entropy Generation in Non-Newtonian Fluids along a Horizontal Plate in Porous Media, Journal of Thermophysics and Heat Transfer, Vol. 25, No. 2, pp. 289-302, 2011.
[15] S. Aiboud, and S. Saouli, “Entropy Analysis for Viscoelastic Magnetohydrodynamics Flow over a Stretching Surface, International Journal of Non-Linear Mechanics, Vol. 54, No. 5, pp. 482-489, 2010.
[16] M. H. Yazdi, S. Abdullah, I. Hashim, and K. Sopian, “Reducing Entropy Generation in MHD Fluid Flow over Open Parallel Microchannels Embedded in a Micropatterned Permeable Surface, Entropy, Vol. 15, pp. 4822-4843, 2013.
[17] M. H. Yazdi, I. Hashim, A. Fudholi, P. Ooshaksaraei, and K. Sopian, “Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface, Mathematical Problems Engineering, Vol. 2014, Article ID 141795, 2014.
[18] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer-Science & Business Media, 2013.
[19] G. Adomian, and R. Rach, “Solving Nonlinear Differential Equations with Decimal Power Nonlinearities, Journal of Mathematical Analysis and Applications, 114, pp. 423-425, 1986.
[20] G. Adomian, and R. Rach, “Nonlinear Differential Equations with Negative Power Nonlinearities, journal of Mathematical Analysis and Applications, 112, pp. 497-501, 1985.
[21] S. S. Al-Ashhab, and R. T. Alqahtani, “Estimation of the Shear Stress Parameter of a Power-Law Fluid, Mathematical Problems in Engineering, Article ID 4729063, 2016.
[22] A. M. Wazwaz, “A Reliable Modification of Adomian Decomposition Method, Applied Mathematics and Computation, 102, pp. 77-86, 1999.

[23] S. A. Khuri, “A Laplace Decomposition Algorithm Applied to a Class of Nonlinear Differential Equation, Journal of Applied Mathematics, 1:4, pp. 141-155, 2001.
[24] 蔡培毅, “Laplace Adomian 混合分解法應用於非線性物理系統之研究, 國立成功大學機械工程學系碩士班論文, 2010.
[25] 陳柏維, “Laplace Adomian 混合分解法應用於邊界層流流經楔型板之研究, 國立成功大學機械工程學系碩士班論文, 2011.
[26] A. Hajihosseini, and B. Soltanalizadeh, “Application of Laplace Adomian Padé Approximant to Solve Exponential Stretching Sheet Problem in Fluid Mechanics, Journal of Novel Applied Sciences, 2(2S), pp. 940-946, 2013.
[27] A. Schafelner, Introduction to Magnetohydrodynamics, Johannes Kepler University, 2016.
[28] A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes, CRC Press, 2013.
[29] M. J. Huang, and C. K. Chen, “Numerical Analysis for Forced Convection over a Flat Plate in Power Law Fluids, Int. Comm. Heat Mass Transfer, Vol. 11, pp. 361-368, 1984.
[30] C. C. Hsu, “A Simple Solution for Boundary Layer Flow of Power Law Fluids Past a Semi-Infinite Flat Plate, AIChE Journal, Vol. 15, Issue 3, pp. 367, 1969.

[31] S. Abbasbandy, and T. Hayat, “Solution of the MHD Falkner-Skan Flow by Homotopy Analysis Method, Commun Nonlinear Sci Numer Simulat, Vol. 14, pp. 3591-3598, 2009.
[32] L. M. Jiji, Heat Convection, Springer-Science & Business Media, 2009.
[33] A. A. Mutlag, M. J. Uddin, and A. I. M. Ismail, “Effect of Thermal Slip on The Falkner-Skan Stretching and Shrinking Wedge Flow of a Power-Law Fluid and Heat Transfer, Modern Applied Science, Vol. 7, No. 8, pp. 57-69, 2013
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊