跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 18:53
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:李育元
Author (Eng.):Yu-YuanLee
Title:利用記憶合金進行導管驅動
Title (Eng.):Catheter actuation using shape memory alloy
Advisor:陳嘉元
advisor (eng):Chia-Yuan Chen
degree:Master
Institution:國立成功大學
Department:機械工程學系
Narrow Field:工程學門
Detailed Field:機械工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2019
Graduated Academic Year:107
language:Chinese
number of pages:58
keyword (chi):形狀記憶合金可操作式導線顱內動脈瘤血管栓塞手術導管介入性治療
keyword (eng):shape memory alloycatheter interventionsintracranial aneurysmendovascular coilingsteerable guidewire
Ncl record status:
  • Cited Cited :0
  • HitsHits:92
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
顱內動脈瘤為一種腦血管疾病,因腦動脈受損而發生異常膨脹而發生。據統計,在美國統計有600萬人患有顱內動脈瘤,其中每年約有1%動脈瘤有破裂風險產生,並會引發出血性中風。目前治療顱內動脈方式以血管栓塞手術為主,在手術中醫生必須手動操控導線,在時間有限的情況下藉由X光將導線引入腫瘤病理位置,在手術過程中由於血管彎曲複雜,容易而造成過度摩擦,導致導線無法到達目標手術失敗,且因過度摩擦血管受損導致感染或併發症產生。為了避免栓塞手術中導線與血管產生過多摩擦及碰撞,本研究設計低成本且具有輔助手動控制導線系統,在導線尖端使用形狀記憶合金微型致動器能夠提升手術提升血管內導線自由度,有效降低手術時間,減少對血管摩擦造成感染與併發症發生率。結果顯示本研究微型致動器前端、後對最大彎取角度分別達到〖35.8〗^。、〖20.4〗^。以及最大橫向位移量可達5.95 (mm)。為了驗證本研究所使用的控制系統是否具備高靈敏度,將測試重複循環試驗,在結果中本研究所設計的微型致動器加熱5秒,達到最大偏轉角度,完全冷卻間隔時間10秒,驗證控制系統具有高靈敏度,可以在致動後迅速回復初始狀態。說明了本實驗之微型致動器具有微型化的尺寸、較佳的導線自由度、且具有高靈敏度的特性,可以縮短手術時間,並提升導線自由度在手術中經過錯綜複雜的血管中更能經過醫生手動操作達到病理位置。另外本研究為了提升手術標準化,而提出一種具有遠程控制導線系統,與微型致動化做整合,並藉由血管模型之實驗測試,將導線移動數據回傳至電腦上監控導線水平旋轉角度及位置,將結果量化出可信度數據足以應用於導管介入性治療,在未來可能設計出輔助翻轉微型致 動導線,能夠讓導線做不同方位偏轉角度,並可藉由數據分析能研發出輔助手動操控微型致動器並與三維成像路徑導引技術做結合,達到與血管實驗模型最佳偏轉角度、降低顯影劑量與X光照射時間,並整合系統提升手術標準化,應用於醫療資匱乏地區。
To sum up, this research proposes a method which is using shape memory alloy (SMA) embedded guidewire to control the micro-actuator for cardiovascular surgery. By this method, the tip of the embolization guidewire can be controlled precisely, that further increases the surgical accuracy and reducing surgery time at the same time. As the results, the system shows that (1) tip of the actuator has an optimal bending angle of 35.8° and end of the actuator has an optimal bending angle 20.4 a guidewire lateral displacement of 5.95 mm. and (2) during the heating process takes 5 seconds to allow the guidewire achieve maximum and achieve initial state in the cooling process for 10 seconds. This performance indicates that this system has an effective control angle and high sensitivity. Moreover, for the ease in standardization of surgery, we use the catheter assisted system. To test the efficacy of proposed device, the system was in-vitro tested with patient-specific vascular network model that demonstrate its appraised feasibility during catheter interventions.
摘要 II
致謝 IX
目錄 X
圖目錄 XIII
表目錄 XV
第一章 摘要 1
1.1 研究背景 1
1.2 顱內動脈瘤文獻回顧 3
1.2.1 顱內動脈瘤 3
1.2.2 顱內動脈瘤破裂 4
1.2.3 顱內動脈瘤治療方法 6
1.2.4 外科夾除手術 8
1.2.5 血管栓塞手術 9
1.3 可操縱式導線文獻回顧 11
1.3.1 可操作導管致動分類 11
1.3.2 磁致動 13
1.3.3 電致動 14
1.3.4 熱致動 15
1.3.5 液壓室致動 16
1.3.6 機械電纜致動 17
1.4 研究目的 24
第二章 研究方法 25
2.1 形狀記憶合金 25
2.2 微型致動器製程 26
2.3 脈波寬度調變與其應用 28
2.4 量化微型致動器 30
2.5 材料力學理論與數值模擬分析 32
2.6 遠端控制系統 35
2.7 血管模型實驗 37
第三章 結果與討論 39
3.1 形狀記憶合金微型致動器分析 39
3.2 占空比分析 42
3.2.1 導線偏轉角分析 42
3.2.2 微型致動器轉角分析 45
3.3 材料力學理論與數值模擬結果 48
3.4 血管模型試驗 49
第四章 結論與未來展望 51
4.1 結論 51
4.2 未來展望 53
參考文獻 54
[1]G. R. Upchurch and T. A. J. A. F. P. Schaub, Abdominal aortic aneurysm, vol. 73, no. 7, pp. 1198-204, 2006.
[2]C. G. McDougall et al., The barrow ruptured aneurysm trial, vol. 116, no. 1, pp. 135-144, 2012.
[3]M. P. Heron, Deaths: leading causes for 2010, 2013.
[4]J. Xu, S. L. Murphy, K. D. Kochanek, B. Bastian, and E. Arias, Deaths: Final data for 2016, 2018.
[5]S. C. Johnston, S. Mendis, and C. D. J. T. L. N. Mathers, Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling, vol. 8, no. 4, pp. 345-354, 2009.
[6]Y. Chen et al., Smart guidewires for smooth navigation in neurovascular intervention, in Industrial and Commercial Applications of Smart Structures Technologies 2015, 2015, vol. 9433, p. 94330Y: International Society for Optics and Photonics.
[7]C.-H. Yun, L. Y. Yeo, J. R. Friend, and B. Yan, Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator, Applied Physics Letters, vol. 100, no. 16, p. 164101, 2012.
[8]Y. Fu, H. Liu, W. Huang, S. Wang, and Z. Liang, Steerable catheters in minimally invasive vascular surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, no. 4, pp. 381-391, 2009.
[9]J. L. Brisman, J. K. Song, and D. W. Newell, Cerebral aneurysms, New England Journal of Medicine, vol. 355, no. 9, pp. 928-939, 2006.
[10]W. I. Schievink, Intracranial aneurysms, New England Journal of Medicine, vol. 336, no. 1, pp. 28-40, 1997.
[11]C. Vega, J. V. Kwoon, and S. D. Lavine, Intracranial aneurysms: current evidence and clinical practice, American family physician, vol. 66, no. 4, pp. 601-610, 2002.
[12]I. Larrabide et al., Intra-aneurysmal pressure and flow changes induced by flow diverters: relation to aneurysm size and shape, American Journal of Neuroradiology, vol. 34, no. 4, pp. 816-822, 2013.
[13]C. Vega, J. V. Kwoon, and S. D. J. A. f. p. Lavine, Intracranial aneurysms: current evidence and clinical practice, vol. 66, no. 4, pp. 601-610, 2002.
[14]L. R. Caplan, Should intracranial aneurysms be treated before they rupture?, ed: Mass Medical Soc, 1998.
[15]J. B. Bederson et al., Recommendations for the management of patients with unruptured intracranial aneurysms, Stroke, vol. 31, no. 11, pp. 2742-2750, 2000.
[16]S. C. Johnston, S. Selvin, and D. R. Gress, The burden, trends, and demographics of mortality from subarachnoid hemorrhage, Neurology, vol. 50, no. 5, pp. 1413-1418, 1998.
[17]D. O. Wiebers and I. S. o. U. I. A. Investigators, Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment, The Lancet, vol. 362, no. 9378, pp. 103-110, 2003.
[18]H. B. J. J. o. n. Locksley, Natural history of subarachnoid hemorrhage, intracranial aneurysms and arteriovenous malformations: based on 6368 cases in the cooperative study, vol. 25, no. 3, pp. 321-324, 1966.
[19]J. J. Heit, M. Iv, and M. J. J. o. s. Wintermark, Imaging of intracranial hemorrhage, vol. 19, no. 1, p. 11, 2017.
[20]J. S. McDonald, R. J. McDonald, J. Fan, D. F. Kallmes, G. Lanzino, and H. J. J. S. Cloft, Comparative effectiveness of unruptured cerebral aneurysm therapies: propensity score analysis of clipping versus coiling, vol. 44, no. 4, pp. 988-994, 2013.
[21]A. H. Chiu, M. Nadarajah, J. D. J. J. o. m. i. Wenderoth, and r. oncology, Cost analysis of intracranial aneurysmal repair by endovascular coiling versus flow diversion: at what size should we use which method?, vol. 57, no. 4, pp. 423-426, 2013.
[22]Z. Dovey, M. Misra, J. Thornton, F. T. Charbel, G. M. Debrun, and J. I. Ausman, Guglielmi detachable coiling for intracranial aneurysms: the story so far, Archives of neurology, vol. 58, no. 4, pp. 559-564, 2001.
[23]L. N. Williams and R. D. Brown, Management of unruptured intracranial aneurysms, Neurology: Clinical Practice, vol. 3, no. 2, pp. 99-108, 2013.
[24]O. N. Naggara, A. Lecler, C. Oppenheim, J.-F. Meder, and J. Raymond, Endovascular treatment of intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on subgroup analyses, Radiology, vol. 263, no. 3, pp. 828-835, 2012.
[25]M. N. Ngoepe, A. F. Frangi, J. V. Byrne, and Y. J. F. i. p. Ventikos, Thrombosis in cerebral aneurysms and the computational modeling thereof: a review, vol. 9, p. 306, 2018.
[26]R. D. Perrone, A. M. Malek, and T. J. N. R. N. Watnick, Vascular complications in autosomal dominant polycystic kidney disease, vol. 11, no. 10, p. 589, 2015.
[27]Y.-S. Lee and J. J. J. o. K. N. S. Park, Anterior choroidal artery aneurysm surgery: ischemic complications and clinical outcomes revisited, vol. 54, no. 2, p. 86, 2013.
[28]B. R. Bendok, R. A. Hanel, and L. N. Hopkins, Coil embolization of intracranial aneurysms, Neurosurgery, vol. 52, no. 5, pp. 1125-1130, 2003.
[29]H. Q. Ontario, Coil embolization for intracranial aneurysms: an evidence-based analysis, Ontario Health Technology Assessment Series, vol. 6, no. 1, p. 1, 2006.
[30]D. A. NICHOLS, F. B. MEYER, D. G. PIEPGRAS, and P. L. SMITH, Endovascular treatment of intracranial aneurysms, in Mayo Clinic Proceedings, 1994, vol. 69, no. 3, pp. 272-285: Elsevier.
[31]H. Rafii-Tari, C. J. Payne, and G.-Z. J. A. o. b. e. Yang, Current and emerging robot-assisted endovascular catheterization technologies: a review, vol. 42, no. 4, pp. 697-715, 2014.
[32]A. Ali, D. H. Plettenburg, and P. J. I. T. o. B. E. Breedveld, Steerable catheters in cardiology: Classifying steerability and assessing future challenges, vol. 63, no. 4, pp. 679-693, 2016.
[33]M. P. Wallace and J. C. Eder, Apparatus and method for internally inducing a magnetic field in an aneurysm to embolize aneurysm with magnetically-controllable substance, ed: Google Patents, 2003.
[34]D. Casey, Vibrating, magnetically guidable catheter with magnetic powder commingled with resin, extruded as an integral part the catheter, ed: Google Patents, 2005.
[35]G. W. Rogers, Piezoelectric ultrasonic micro-motor system for minimally invasive surgery-the Intellimotor, in AIP Conference Proceedings, 2012, vol. 1433, no. 1, pp. 705-708: AIP.
[36]S. Guo, T. Fukuda, T. Nakamura, F. Arai, K. Oguro, and M. Negoro, Micro active guide wire catheter system-characteristic evaluation, electrical model and operability evaluation of micro active catheter, in Proceedings of IEEE International Conference on Robotics and Automation, 1996, vol. 3, pp. 2226-2231: IEEE.
[37]E. Y. Ng and L. J. P. o. t. I. o. M. E. Chua, Part H: Journal of Engineering in Medicine, Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis, vol. 216, no. 3, pp. 171-183, 2002.
[38]M. M. Barry et al., Smart Guidewires for Smooth Navigation in Neurovascular Intervention, vol. 9, no. 1, p. 011011, 2015.
[39]A. H. Dunfee and D. D. Barone, Intraluminal guidewire with hydraulically collapsible self-expanding protection device, ed: Google Patents, 2009.
[40]K. C. Gardeski, M. R. Leners, J. T. Torbert, and R. J. Thomas, Multi-lumen steerable catheter, ed: Google Patents, 2006.
[41]P. Breedveld and J. S. Scheltes, Instrument for fine-mechanical or surgical applications, ed: Google Patents, 2015.
[42]A. N. Kabe, T. L. Thornton, and A. M. Weiss, Steerable assembly for surgical catheter, ed: Google Patents, 2014.
[43]A. Ali, D. H. Plettenburg, and P. Breedveld, Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges, IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 679-693, 2016.
[44]G. W. Rogers, B. B. Linde, J. Pączkowski, and N. Ponikwicki, Piezoelectric ultrasonic micro-motor system for minimally invasive surgery-the Intellimotor, in AIP Conference Proceedings, 2012, vol. 1433, no. 1, pp. 705-708: AIP.
[45]S. Guo, T. Fukuda, F. Arai, K. Oguro, M. Negoro, and T. Nakamura, Micro active guide wire catheter system-characteristic evaluation, electrical model and operability evaluation of micro active catheter, in Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on, 1995, pp. 131-136: IEEE.
[46]B.-K. Fang, M.-S. Ju, and C.-C. K. Lin, A new approach to develop ionic polymer–metal composites (IPMC) actuator: Fabrication and control for active catheter systems, Sensors and Actuators A: Physical, vol. 137, no. 2, pp. 321-329, 2007.
[47]E. Ayvali, C.-P. Liang, M. Ho, Y. Chen, and J. P. Desai, Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures, The International journal of robotics research, vol. 31, no. 5, pp. 588-603, 2012.
[48]G. Lim, K. Park, M. Sugihara, K. Minami, and M. Esashi, Future of active catheters, Sensors and Actuators A: Physical, vol. 56, no. 1-2, pp. 113-121, 1996.
[49]M. Langelaar and F. van Keulen, Modeling of a shape memory alloy active catheter, in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004, p. 1653.
[50]R. Rioux and T. V. Casey, Magnetically steerable catheter assembly, ed: Google Patents, 2013.
[51]M. S. Choi et al., Comparison of magnetic navigation system and conventional method in catheter ablation of atrial fibrillation: is magnetic navigation system is more effective and safer than conventional method?, Korean circulation journal, vol. 41, no. 5, pp. 248-252, 2011.
[52]N. Gudino, J. Heilman, J. Derakhshan, J. L. Sunshine, J. L. Duerk, and M. A. Griswold, Control of intravascular catheters using an array of active steering coils, Medical physics, vol. 38, no. 7, pp. 4215-4224, 2011.
[53]K. Ikuta, H. Ichikawa, K. Suzuki, and T. Yamamoto, Safety active catheter with multi-segments driven by innovative hydro-pressure micro actuators, in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 2003, pp. 130-135: IEEE.
[54]J. De Boer, Multi-lumen steerable catheter, ed: Google Patents, 2005.
[55]J. A. Johansen, C. E. Yee, and J. M. Neet, Deflecting catheter, ed: Google Patents, 2005.
[56]G. J. Skerven, Segmented balloon for catheter tip deflection, ed: Google Patents, 2008.
[57]X. Guo, T. T. Tegg, and R. E. Stehr, Deflectable catheter with distal deflectable segment, ed: Google Patents, 2011.
[58]J. R. Watson, Asymmetric dual directional steerable catheter sheath, ed: Google Patents, 2013.
[59]S. Carroll, D. Santoianni, B. Thibault, D. Wittenberger, M.-P. Aubert, and M.-A. Marcotte, Defined deflection structure, ed: Google Patents, 2011.
[60]G. Gerboni, P. W. Henselmans, E. A. Arkenbout, W. R. van Furth, and P. Breedveld, HelixFlex: bioinspired maneuverable instrument for skull base surgery, Bioinspiration & biomimetics, vol. 10, no. 6, p. 066013, 2015.
[61]A. N. Kabe, T. L. Thornton, and A. M. Weiss, Steerable assembly for surgical catheter, ed: Google Patents, 2012.
[62]M. Chow, Deflectable catheter assembly, ed: Google Patents, 2012.
[63]A. Chauhan, S. Patel, R. Vaish, C. R. J. M. E. Bowen, and Sustainability, A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities, vol. 2, 2015.
[64]F. Bello and S. Cotin, Biomedical Simulation: 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014, Proceedings. Springer, 2014.
[65]Y.-H. Lu, K. Mani, B. Panigrahi, S. Hajari, C.-Y. J. C. e. Chen, and technology, A shape memory alloy-based miniaturized actuator for catheter interventions, vol. 9, no. 3, pp. 405-413, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
system icon system icon