|
[1]G. R. Upchurch and T. A. J. A. F. P. Schaub, Abdominal aortic aneurysm, vol. 73, no. 7, pp. 1198-204, 2006. [2]C. G. McDougall et al., The barrow ruptured aneurysm trial, vol. 116, no. 1, pp. 135-144, 2012. [3]M. P. Heron, Deaths: leading causes for 2010, 2013. [4]J. Xu, S. L. Murphy, K. D. Kochanek, B. Bastian, and E. Arias, Deaths: Final data for 2016, 2018. [5]S. C. Johnston, S. Mendis, and C. D. J. T. L. N. Mathers, Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling, vol. 8, no. 4, pp. 345-354, 2009. [6]Y. Chen et al., Smart guidewires for smooth navigation in neurovascular intervention, in Industrial and Commercial Applications of Smart Structures Technologies 2015, 2015, vol. 9433, p. 94330Y: International Society for Optics and Photonics. [7]C.-H. Yun, L. Y. Yeo, J. R. Friend, and B. Yan, Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator, Applied Physics Letters, vol. 100, no. 16, p. 164101, 2012. [8]Y. Fu, H. Liu, W. Huang, S. Wang, and Z. Liang, Steerable catheters in minimally invasive vascular surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, no. 4, pp. 381-391, 2009. [9]J. L. Brisman, J. K. Song, and D. W. Newell, Cerebral aneurysms, New England Journal of Medicine, vol. 355, no. 9, pp. 928-939, 2006. [10]W. I. Schievink, Intracranial aneurysms, New England Journal of Medicine, vol. 336, no. 1, pp. 28-40, 1997. [11]C. Vega, J. V. Kwoon, and S. D. Lavine, Intracranial aneurysms: current evidence and clinical practice, American family physician, vol. 66, no. 4, pp. 601-610, 2002. [12]I. Larrabide et al., Intra-aneurysmal pressure and flow changes induced by flow diverters: relation to aneurysm size and shape, American Journal of Neuroradiology, vol. 34, no. 4, pp. 816-822, 2013. [13]C. Vega, J. V. Kwoon, and S. D. J. A. f. p. Lavine, Intracranial aneurysms: current evidence and clinical practice, vol. 66, no. 4, pp. 601-610, 2002. [14]L. R. Caplan, Should intracranial aneurysms be treated before they rupture?, ed: Mass Medical Soc, 1998. [15]J. B. Bederson et al., Recommendations for the management of patients with unruptured intracranial aneurysms, Stroke, vol. 31, no. 11, pp. 2742-2750, 2000. [16]S. C. Johnston, S. Selvin, and D. R. Gress, The burden, trends, and demographics of mortality from subarachnoid hemorrhage, Neurology, vol. 50, no. 5, pp. 1413-1418, 1998. [17]D. O. Wiebers and I. S. o. U. I. A. Investigators, Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment, The Lancet, vol. 362, no. 9378, pp. 103-110, 2003. [18]H. B. J. J. o. n. Locksley, Natural history of subarachnoid hemorrhage, intracranial aneurysms and arteriovenous malformations: based on 6368 cases in the cooperative study, vol. 25, no. 3, pp. 321-324, 1966. [19]J. J. Heit, M. Iv, and M. J. J. o. s. Wintermark, Imaging of intracranial hemorrhage, vol. 19, no. 1, p. 11, 2017. [20]J. S. McDonald, R. J. McDonald, J. Fan, D. F. Kallmes, G. Lanzino, and H. J. J. S. Cloft, Comparative effectiveness of unruptured cerebral aneurysm therapies: propensity score analysis of clipping versus coiling, vol. 44, no. 4, pp. 988-994, 2013. [21]A. H. Chiu, M. Nadarajah, J. D. J. J. o. m. i. Wenderoth, and r. oncology, Cost analysis of intracranial aneurysmal repair by endovascular coiling versus flow diversion: at what size should we use which method?, vol. 57, no. 4, pp. 423-426, 2013. [22]Z. Dovey, M. Misra, J. Thornton, F. T. Charbel, G. M. Debrun, and J. I. Ausman, Guglielmi detachable coiling for intracranial aneurysms: the story so far, Archives of neurology, vol. 58, no. 4, pp. 559-564, 2001. [23]L. N. Williams and R. D. Brown, Management of unruptured intracranial aneurysms, Neurology: Clinical Practice, vol. 3, no. 2, pp. 99-108, 2013. [24]O. N. Naggara, A. Lecler, C. Oppenheim, J.-F. Meder, and J. Raymond, Endovascular treatment of intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on subgroup analyses, Radiology, vol. 263, no. 3, pp. 828-835, 2012. [25]M. N. Ngoepe, A. F. Frangi, J. V. Byrne, and Y. J. F. i. p. Ventikos, Thrombosis in cerebral aneurysms and the computational modeling thereof: a review, vol. 9, p. 306, 2018. [26]R. D. Perrone, A. M. Malek, and T. J. N. R. N. Watnick, Vascular complications in autosomal dominant polycystic kidney disease, vol. 11, no. 10, p. 589, 2015. [27]Y.-S. Lee and J. J. J. o. K. N. S. Park, Anterior choroidal artery aneurysm surgery: ischemic complications and clinical outcomes revisited, vol. 54, no. 2, p. 86, 2013. [28]B. R. Bendok, R. A. Hanel, and L. N. Hopkins, Coil embolization of intracranial aneurysms, Neurosurgery, vol. 52, no. 5, pp. 1125-1130, 2003. [29]H. Q. Ontario, Coil embolization for intracranial aneurysms: an evidence-based analysis, Ontario Health Technology Assessment Series, vol. 6, no. 1, p. 1, 2006. [30]D. A. NICHOLS, F. B. MEYER, D. G. PIEPGRAS, and P. L. SMITH, Endovascular treatment of intracranial aneurysms, in Mayo Clinic Proceedings, 1994, vol. 69, no. 3, pp. 272-285: Elsevier. [31]H. Rafii-Tari, C. J. Payne, and G.-Z. J. A. o. b. e. Yang, Current and emerging robot-assisted endovascular catheterization technologies: a review, vol. 42, no. 4, pp. 697-715, 2014. [32]A. Ali, D. H. Plettenburg, and P. J. I. T. o. B. E. Breedveld, Steerable catheters in cardiology: Classifying steerability and assessing future challenges, vol. 63, no. 4, pp. 679-693, 2016. [33]M. P. Wallace and J. C. Eder, Apparatus and method for internally inducing a magnetic field in an aneurysm to embolize aneurysm with magnetically-controllable substance, ed: Google Patents, 2003. [34]D. Casey, Vibrating, magnetically guidable catheter with magnetic powder commingled with resin, extruded as an integral part the catheter, ed: Google Patents, 2005. [35]G. W. Rogers, Piezoelectric ultrasonic micro-motor system for minimally invasive surgery-the Intellimotor, in AIP Conference Proceedings, 2012, vol. 1433, no. 1, pp. 705-708: AIP. [36]S. Guo, T. Fukuda, T. Nakamura, F. Arai, K. Oguro, and M. Negoro, Micro active guide wire catheter system-characteristic evaluation, electrical model and operability evaluation of micro active catheter, in Proceedings of IEEE International Conference on Robotics and Automation, 1996, vol. 3, pp. 2226-2231: IEEE. [37]E. Y. Ng and L. J. P. o. t. I. o. M. E. Chua, Part H: Journal of Engineering in Medicine, Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis, vol. 216, no. 3, pp. 171-183, 2002. [38]M. M. Barry et al., Smart Guidewires for Smooth Navigation in Neurovascular Intervention, vol. 9, no. 1, p. 011011, 2015. [39]A. H. Dunfee and D. D. Barone, Intraluminal guidewire with hydraulically collapsible self-expanding protection device, ed: Google Patents, 2009. [40]K. C. Gardeski, M. R. Leners, J. T. Torbert, and R. J. Thomas, Multi-lumen steerable catheter, ed: Google Patents, 2006. [41]P. Breedveld and J. S. Scheltes, Instrument for fine-mechanical or surgical applications, ed: Google Patents, 2015. [42]A. N. Kabe, T. L. Thornton, and A. M. Weiss, Steerable assembly for surgical catheter, ed: Google Patents, 2014. [43]A. Ali, D. H. Plettenburg, and P. Breedveld, Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges, IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 679-693, 2016. [44]G. W. Rogers, B. B. Linde, J. Pączkowski, and N. Ponikwicki, Piezoelectric ultrasonic micro-motor system for minimally invasive surgery-the Intellimotor, in AIP Conference Proceedings, 2012, vol. 1433, no. 1, pp. 705-708: AIP. [45]S. Guo, T. Fukuda, F. Arai, K. Oguro, M. Negoro, and T. Nakamura, Micro active guide wire catheter system-characteristic evaluation, electrical model and operability evaluation of micro active catheter, in Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on, 1995, pp. 131-136: IEEE. [46]B.-K. Fang, M.-S. Ju, and C.-C. K. Lin, A new approach to develop ionic polymer–metal composites (IPMC) actuator: Fabrication and control for active catheter systems, Sensors and Actuators A: Physical, vol. 137, no. 2, pp. 321-329, 2007. [47]E. Ayvali, C.-P. Liang, M. Ho, Y. Chen, and J. P. Desai, Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures, The International journal of robotics research, vol. 31, no. 5, pp. 588-603, 2012. [48]G. Lim, K. Park, M. Sugihara, K. Minami, and M. Esashi, Future of active catheters, Sensors and Actuators A: Physical, vol. 56, no. 1-2, pp. 113-121, 1996. [49]M. Langelaar and F. van Keulen, Modeling of a shape memory alloy active catheter, in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004, p. 1653. [50]R. Rioux and T. V. Casey, Magnetically steerable catheter assembly, ed: Google Patents, 2013. [51]M. S. Choi et al., Comparison of magnetic navigation system and conventional method in catheter ablation of atrial fibrillation: is magnetic navigation system is more effective and safer than conventional method?, Korean circulation journal, vol. 41, no. 5, pp. 248-252, 2011. [52]N. Gudino, J. Heilman, J. Derakhshan, J. L. Sunshine, J. L. Duerk, and M. A. Griswold, Control of intravascular catheters using an array of active steering coils, Medical physics, vol. 38, no. 7, pp. 4215-4224, 2011. [53]K. Ikuta, H. Ichikawa, K. Suzuki, and T. Yamamoto, Safety active catheter with multi-segments driven by innovative hydro-pressure micro actuators, in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 2003, pp. 130-135: IEEE. [54]J. De Boer, Multi-lumen steerable catheter, ed: Google Patents, 2005. [55]J. A. Johansen, C. E. Yee, and J. M. Neet, Deflecting catheter, ed: Google Patents, 2005. [56]G. J. Skerven, Segmented balloon for catheter tip deflection, ed: Google Patents, 2008. [57]X. Guo, T. T. Tegg, and R. E. Stehr, Deflectable catheter with distal deflectable segment, ed: Google Patents, 2011. [58]J. R. Watson, Asymmetric dual directional steerable catheter sheath, ed: Google Patents, 2013. [59]S. Carroll, D. Santoianni, B. Thibault, D. Wittenberger, M.-P. Aubert, and M.-A. Marcotte, Defined deflection structure, ed: Google Patents, 2011. [60]G. Gerboni, P. W. Henselmans, E. A. Arkenbout, W. R. van Furth, and P. Breedveld, HelixFlex: bioinspired maneuverable instrument for skull base surgery, Bioinspiration & biomimetics, vol. 10, no. 6, p. 066013, 2015. [61]A. N. Kabe, T. L. Thornton, and A. M. Weiss, Steerable assembly for surgical catheter, ed: Google Patents, 2012. [62]M. Chow, Deflectable catheter assembly, ed: Google Patents, 2012. [63]A. Chauhan, S. Patel, R. Vaish, C. R. J. M. E. Bowen, and Sustainability, A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities, vol. 2, 2015. [64]F. Bello and S. Cotin, Biomedical Simulation: 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014, Proceedings. Springer, 2014. [65]Y.-H. Lu, K. Mani, B. Panigrahi, S. Hajari, C.-Y. J. C. e. Chen, and technology, A shape memory alloy-based miniaturized actuator for catheter interventions, vol. 9, no. 3, pp. 405-413, 2018.
|