跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李松育
研究生(外文):Sung-YuLee
論文名稱:觸覺回饋雙向控制於虛擬實境之實現
論文名稱(外文):Realization of Haptic Feedback Bilateral Control in Virtual Reality
指導教授:蔡明祺
指導教授(外文):Mi-Ching Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:力感回饋阻抗控制狀態估測器雙向控制
外文關鍵詞:haptic feedbackimpedance controlstate observerbilateral control
相關次數:
  • 被引用被引用:6
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為改良傳統人機互動系統中,僅依賴位置資訊達到動作同步的高剛性控制缺點,本研究整合阻抗控制、扭矩估測與同動控制,提出具觸覺回饋機制的雙向控制架構。在所發展的雙向控制中,不僅可藉由加入調變因子,作為操作端與輸出端間的虛擬傳動比例,達到不同的運動輸出響應,更能以此延伸至多向控制,擴充人機互動系統的操控自由度。在本研究中,透過整合兩組馬達與虛擬實境負載系統,建構虛實整合的人機互動三端系統。透過兩組馬達可提供兩位操作者同時進行人機互動,並透過力感回饋的方式達到合作、教導之功能。此外,透過記錄操作者的力量與位置,可以重現相同的運動模式;記錄虛擬端的力量與位置,提供操作者針對操作速度、施力的分析,改善操作過程。
Human-computer interaction system provides user an interface to interact with machines, but virtual reality device focus on position following rather than haptic feedback. Due to lack of real force feedback in virtual reality system, this research proposed a haptic feedback control structure which can provide real force feedback and position following. By integrating torque observer, impedance control and synchronous motion control, a bilateral control structure is proposed in this research. The position and torque ratio between the master and slave in bilateral control system can be adjusted by applying scaling factor which can increase the design freedom. Also, bilateral control can be extended into multilateral control to increase the control freedom. Two motors and a virtual load are integrated to form a trilateral virtual reality integration system. Two operators can interact with the motors simultaneously, thus collaboration and teaching are realized using haptic feedback.
摘要 I
Abstract II
致謝 XIX
目錄 XX
表目錄 XXIII
圖目錄 XXIII
符號表 XXVI
第一章 動機與文獻回顧 1
1.1研究動機 1
1.2文獻回顧 3
1.2.1阻抗控制 3
1.2.2同步運動控制 5
1.2.3扭矩估測 7
1.2.4雙向控制 9
1.2.5運動行為複製(Motion Copying) 12
1.3研究目的 13
1.4本文架構 14
第二章 雙向控制理論 15
2.1扭矩估測器 15
2.2雙向控制 17
2.3雙向控制與調變因子(Scaling Factor) 19
2.4多向控制 21
2.5運動行為複製 22
第三章 控制器設計與虛擬環境動態設計 24
3.1系統識別與控制器參數 25
3.2控制器設計 26
3.3估測器設計 27
3.4虛擬環境動態設計 28
第四章 實驗結果與分析 34
4.1實驗架構 35
4.1.1馬達動力模組 35
4.1.2控制及訊號擷取系統 36
4.1.3虛擬實境軟體 37
4.2實驗結果 38
4.2.1雙向控制架構驗證 38
4.2.2多向控制整合虛擬實境 40
4.2.3運動行為複製 45
第五章 結論與未來建議 48
5.1結論 48
5.2未來建議 48
參考文獻 49
[1]Mobile World Congress - Tactile Internet with Human in the Loop, https://www.youtube.com/watch?v=oPs0NUT0jyI.
[2]Virtual Reality - SteamVR featuring the HTC Vive, https://www.youtube.com/watch?v=qYfNzhLXYGc.
[3]S. Katsura, W. Yamanouchi, and Y. Yokokura, “Real-world haptics: Reproduction of human motion, IEEE Industrial Electronics Magazine, vol. 6, no. 1, pp. 25-31, 2012.
[4]胡家勝,「阻抗控制於力覺回饋控制應用之設計與實現」,碩士論文,國立成功大學機械工程研究所,2003。.
[5]N. Hogan, “Impedance control: An approach to manipulation: Part I—Theory, Part II—Implementation, Part III—Application, Journal of dynamic systems, measurement, and control, vol. 107, no. 1, pp. 1-23, 1985.
[6]王科霖,「力感阻抗控制應用於電子踏板及車輛防撞策略」,碩士論文,國立成功大學機械工程研究所,2017.
[7]楊君賢,「具機構耦合之雙線性伺服系統鑑別與控制」,碩士論文,國立成功大學機械工程研究所,2003。.
[8]R. D. Lorenz, and P. B. Schmidt, “Synchronized motion control for process automation, IEEE Industry Applications Society Annual Meeting, pp. 1693-1698, 1989.
[9]FANUC, Alpha Series AC Servo Motor Parameter Manual: FANUC, 1999.
[10]許家桾、陳俊霖,「應用加速規於馬達控制系統之扭矩外擾估測」,馬達電子報第762期,馬達科技研究中心,2017。.
[11]S. Katsura, K. Irie, and K. Ohishi, “Wideband force control by position-acceleration integrated disturbance observer, IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1699-1706, 2008.
[12]薛博文,「狀態及外擾估測於動力輔助控制系統之設計與應用」,博士論文,國立成功大學機械工程研究所,2013。.
[13]G. Ellis, Observers in control systems: a practical guide: Elsevier, 2002.
[14]S. Katsura, Y. Matsumoto, and K. Ohnishi, “Realization of Law of action and reaction by multilateral control, IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1196-1205, 2005.
[15]S. Katsura, and K. Ohnishi, “A realization of haptic training system by multilateral control, IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1935-1942, 2006.
[16]N. Motoi, R. Kubo, T. Shimono, and K. Ohnishi, “Bilateral control with different inertia based on modal decomposition, IEEE International Workshop on Advanced Motion Control, pp. 697-702, 2010.
[17]K. Ogawa, and K. Ohnishi, “Development of a haptic palpation device with a scaling bilateral control for the NOTES surgery, IEEE International Conference on Mechatronics, pp. 93-98, 2017.
[18]M. Aoki, T. Shimon, T. Matsunaga, T. Mizoguchi, S. Shibao, H. Sasaki, and K. Ohnishi, “Identification method of environmental stiffness using haptic forceps for brain surgery, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 207-212, 2018.
[19]Y. Yokokura, S. Katsura, and K. Ohishi, “Motion copying system based on real-world haptics in variable speed, International Power Electronics and Motion Control Conference, pp. 1604-1609, 2008.
[20]S. Butterworth, “On the theory of filter amplifiers, Wireless Engineer, vol. 7, no. 6, pp. 536-541, 1930.
[21]B. Fischer, and E. Ramsperger, “Human express saccades: extremely short reaction times of goal directed eye movements, Experimental Brain Research, vol. 57, no. 1, pp. 191-195, January 01, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top