|
[1]K.-J. Jhong, W.-C. Huang, and W.-H. Lee, Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting, Physics Procedia, 2016. [2]C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing, Review of selective laser melting: Materials and applications, Applied Physics Reviews, 2015. [3]H. Shokrollahi and K. Janghorban, Soft magnetic composite materials (SMCs), Journal of Materials Processing Technology, 2007. [4]K.-J. Jhong, T.-W. Chang, W.-H. Lee, M.-C. Tsai, and I.-H. Jiang, Characteristic of high frequency Fe-Si-Cr material for motor application by selective laser melting, AIP Advence, 2019. [5]R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, Machine learning in materials informatics: recent applications and prospects, Computational Materials, 2017. [6]C. Kamath, Data mining and statistical inference in selective laser melting, The International Journal of Advanced Manufacturing Technology, 2016. [7]B. Kappes, S. Moorthy, D. Drake, H. Geerlings, and A. Stebner, Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718, in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, 2018. [8]B. Yuan, G. M. Guss, A. C. Wilson, S. P. Hau‐Riege, P. J. DePond, S. McMains, M. J. Matthews, and B. Giera, Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion, Advanced Materials Technologies, 2018. [9]東台精積AMP-160. Available: http://www.tongtai.com.tw/tw/product-detail.php?id=315 [10]嘉鋼精密工業股份有限公司. Available: http://www.cysteel.com.tw/ [11]J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective laser melting of iron-based powder, Journal of Materials Processing Technology, 2004. [12]KEYENCE VHX-5000. Available: https://www.keyence.com.tw/products/microscope/digital-microscope/vhx-5000/index.jsp [13]B-H Analyzer SY-8218 Available: https://www.iti.iwatsu.co.jp/en/products/sy/sy8218_top_e.html [14]Kaggle: Your Home for Data Science. Available: https://www.kaggle.com/ [15]A. K. Jain, J. C. Mao, and K. M. Mohiuddin, Artificial neural networks: A tutorial, (in English), Computer, 1996. [16]T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016. [17]Scikit-learn algorithm cheat-sheet. Available: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html [18]T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford University Press, Inc., 1996. [19]Python API Reference. Available: https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn [20]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 2002.
|