跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張栩毓
研究生(外文):Shu-YuChang
論文名稱:擴增公設設計於微米級光固化3D 列印機之創新與升級
論文名稱(外文):Extended axiomatic design applied to innovationand upgrading of micro-scale stereolithgraphy3D printer
指導教授:張仁宗張仁宗引用關係
指導教授(外文):Ren-Jung Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:升級公設理論3D 列印光固化雷射
外文關鍵詞:UpgradeAxiomatic design3D PrintingstereolithographyLaser
相關次數:
  • 被引用被引用:2
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文主要提出擴增公設設計方法並根據其流程升級微米級加工之光固化3D 列印機,並對其固化加工材料進行測試與製作微型撓性夾爪為其應用。提出之擴增公設設計方法,可以有效的利用現有光固化3D 列印機之知識結構,更新設計以便的升級系統的性能,故本文依照擴增公設設計法,根據升級使用需求開發出線徑12 微米、光點位移解析度1 微米、可變層高之列印機;本研究開發之列印機架設於現有之倒立式相位顯微鏡,固能透過顯微鏡實現原地 (In-situ)加工製造並觀測;在材料特性測式部分,列印撓性軸承懸臂樑以求得物件之楊氏係數,並透過分數階微分方程量測其黏彈動態特性參數。最後再製造出之立體式微夾持器並完成實際應用之開合測試。
This research is focused on providing a systematic approach for upgrading the performance of stereolithography micro-scaled-used 3D printer. Axiomatic design is one of a systematic approach that can enhance effectiveness when developing a system. The proposed process includes two dominant development loops and five iterative upgrading loops. One can upgrade a system by a prior knowledge after running the iterative upgrading process. We also test the fundamental operating parameters based on stereolithography models for helping us tune the settings. The static and dynamic characteristics of the resin are tested in comparison to the Voigt model and the modified Voigt model. Also, the printed microgripper is about 800 micrometers by 800 micrometers The fine geometrical features including hinge shape, flat gripping surface and across bridge can be fabricated for the use of biomedical field in the future.
目錄
圖目錄 ........................... XI
表目錄 ........................... XIV
第1 章 緒論.......................... 1
1-1 前言........................ 1
1-2 研究動機 ...................... 1
1-3 文獻回顧 ...................... 2
1-3.1 分層製造之歷史發展 ................ 2
1-3.2 光固化成型之歷史發展 ............... 4
1-3.3 光固化成型技術 .................. 7
1-4 系統設計方法 .................... 8
1-4.1 公理設計理論 .................. 10
1-5 本章總結 ....................... 13
第2 章 基礎理論 ..................... 14
2-1 前言 ........................ 14
2-2 高斯光束 (Gaussian Beam) ............... 14
2-2.1 高斯光束[17] .................. 14
2-2.2 高斯光束基本特性 .................. 17
2-2.3 高斯光束傳播 .................... 20
2-2.4 高斯光束聚焦 .................... 22
2-3 波導傳輸 ....................... 24
2-4 光化學之反應 .................... 28
2-4.1 光化學第一反應定律 (Grotthuss-Draper law) ...... 28
2-4.2 光化學第二反應定律 (Stark–Einstein law) ....... 28
2-4.3 光吸收定律 (Beer–Lambert law) ........... 29
2-4.4 光固化 [25][26] ................. 29
2-5 本章總結 ...................... 31
第3 章 公設理論延伸應用於系統升級 ............ 32
3-1 前言......................... 32
3-1.1 公設設計 ...................... 32
3-2 公設設計於系統性能升級 ................ 32
3-3 本章結論 ....................... 36
第4 章 3D 列印機性能升級 .................. 37
4-1 前言 ........................ 37
4-2 原型機之知識結構 ................... 37
4-2.1 客戶屬性 ...................... 38
4-2.2 功能需求 ...................... 38
4-2.3 設計參數 ...................... 39
4-2.4 製程變數 ...................... 40
4-3 系統升級之知識結構與分析 ................ 41
4-3.1 控制因子 ...................... 42
4-3.2 製程變數 ...................... 44
4-3.3 設計參數 ...................... 48
4-3.4 功能需求 ...................... 49
4-4 升級系統之知識結構 .................. 50
4-4.1 客戶屬性 ...................... 50
4-4.2 功能需求 ...................... 51
4-4.3 設計參數 ...................... 53
4-4.4 製程變數 ...................... 54
4-4.5 控制因子 ...................... 58
4-5 升級結果與討論 ................... 68
4-5.1 光固化3D 列印機之標準測試 ............ 68
4-6 本章總結 ...................... 71
第5 章 撓性材料測試與應用 ................ 73
5-1 前言 ........................ 73
5-2 高分子材料特性 .................... 73
5-2.1 潛變 (Creep) ................... 73
5-2.2 鬆弛 (Relaxation) ................. 74
5-2.2 預載 (Pre-condition) ................ 74
5-2.2 遲滯 (Hysteresis) .................. 75
5-3 古典流變模型 .................... 75
5-3.1 潛變響應數學模型分析 ................ 77
5-3.2 波茲曼疊加原理 (Boltzmann superposition principle) ... 81
5-4 近代分數微分模型 .................. 81
5-4.1 靜態測試 .................... 83
5-4.2 動態測試 .................... 86
5-5 撓性材料之應用 ................... 89
5-5.1 撓性夾爪 ...................... 92
5-6 本章總結 ...................... 94
第6 章 結論與未來展望 .................. 95
6-1 前言 ........................ 95
6-2 結論......................... 95
6-3 未來展望 ....................... 96
參考文獻
[1] N. P. Suh, “Axiomatic design -Advances and Applications, 1st
edition, Oxford, England, Oxford University Press, 1990.
[2] L. D. Albano, N. P. Suh, “Research in Engineering Design,
Axiomatic Approach to Structural Design, Vol. 4, Issue 3, pp. 171-183,
1992.
[3] E. Rauch, D. T. Matt, P. Dallasega, “Application of Axiomatic Design
in manufacturing system design: a literature review, Procedia ICAD.,
Vol. 53, pp. 1-7, 2016.
[4] F. Willeme, “Photo-sculpture, U.S. Patent US43822A, Aug., 09,
1864.
[5] J. E. Blanther, “Manufacure of contour relief-maps, U.S. Patent
US473901A, May, 03, 1892.
[6] P. L. DiMatteo, “Method of generating and constructing threedimensional
bodies, U.S. Patent US3932923A, Oct., 21, 11974.
[7] 小玉秀男,「3次元情報の表示法としての立体形状自動作成
法」,電子通信学会論文誌,C Vol. J64,C No.4,pp. 237-241,
1981年。
[8] H. Kodama, “A scheme for three-dimensional display by automatic
fabrication of three-dimensional model, IEICE Transactions on
Electronics (Japanese Edition), Vol. J64-C, No. 4, pp. 237-241, Apr.
1981.
[9] H. Kodama, “Automatic method for fabricating a three-dimensional
plastic model with photo-hardening polymer, Review of Scientific
instruments, Vol. 52, No. 11, pp. 1770-1773, Nov. 1981.
[10] A. L. Mehaute, O. D. Witte, J. C. Andre, “Device for producing a
model of an industrial part., French Patent FR 2567668 A1, Jan 17, 1986
[11] C. W. Hull, “Apparatus for production of three-dimensional objects
by stereolithography, U.S. Patent US4575330A, Aug. 08, 1984
[12] E. M. Sachs, J. S. Haggerty, M. J. Cima, P. A. Williams, “Threedimensional
printing techniques, U.S. Patent US5204055A, Dec. 08,
1989.
[13] Z. Weng, Y. Zhou, W. Lin, T. Senthil, L. Wu, “Structure-property
relationship of nano enhanced stereolithography resin for desktop SLA
3D printer, Composites: Part A: Applied Science and Manufacturing,
pp. 234-242, 2016.
[14] K. Manke, Nanomanufacturing research group products. [Online].
Available: https://news.berkeley.edu/2019/01/31/new-3d-printer-uses
rays-of-light-to-shape-objects-transform-product-design/, Accessed on:
Mar. 11, 2019.
[15]天馬科技股份有限公司,台灣,「光固化技術SLA及DLP比較」
[Online]. Available: https://www.taiwanteama.com.tw/, Accessed on:
Jan. 2019
[16] R. J. Chang, Y. T. Hsieh, E. Chang, “A Systematic Framework of
Equipment. Maintenance and Service with Application to Wire Conder,
iBusiness, Vol. 2, No. 1, pp. 29-41, 2010.
[17] 許阿娟、朱嘉雯、林佳芬、陳志隆,「光學系統設計進階
篇」,第一版,2001。
[18] A. E. Siegman, “Lasers, University science books, 1986.
[19] S. D. Brorsomn, “What is the Confocal Parameter? IEEE Journal of
Quantum Electronics, Vol. 24. No.3, 1988.
[20] Fiber Optics. [Online]. Available:
https://zh.wikipedia.org/wiki/Optical_fiber, Accessed on: Mar. 2019.
[21] Saleh, E. A. Bahaa, Teich, C. Malvin, “Fiber optics, Fundamentals
of photonics, 2nd, Wiley-Interscience, pp. 272-309, 1992.
[22] R. K. Shevgaonkar, India. [Online]. Available:
https://nptel.ac.in/courses/117101002/downloads/Lec01.pdf, Accessed
on: Feb. 12, 2019.
[23] C. H. Wells, “Introduction to molecular photochemistry, Springer,
New York, University science books, 1973.
[24] Turro, Nicholas. “Modern molecular photochemistry, Springer,
New York, University science books, 1991.
[25] P. J. Ba´rtolo, “Theoretical and modeling aspects of curing
reactions, Stereolithography, 1st, Ch. 9, pp. 209-243, 2011.
[26] P. F. Jacobs, “Fundamental processes, Rapid prototyping and
manufacturing, 1st, Ch. 4, pp. 33-64, 1992.
[27]黃柏軒,「使用公設設計體系改進光固化微型3D 列印機之性能
」,國立成功大學碩士論文,2018。
[28] M. G. Duney, G. K. Fedder, “Estimation of line dimensions in 3D
direct laser writing lithography. Micromechanics and Microengineering,
Vol 26, No. 10, Sep. 2016.
[29] J. Keaveney, “Automated translating beam proflier for in-situ laser
beam spot-size and focal position measurements. Review of Scientific
Instruments, Vol. 89, Issue 3, 2018.
[30] SLD3131vf, [Online]. Available:
www.5lab.co.jp/pdf/ldstock/sld3131vf_vfi.pdf, Accessed on: Mar. 2019.
[31] H. Sun, “Laser diode beam basics, A Practical Guide to Handling
Laser Diode Beams, Springer, New York, Ch. 2, pp. 28-30, 2015.
[32] O. Svelto, Laser beam transformation: propagation, amplification,
frequency conversion, pulse compression and pulse expansion,
Principles of Lasers, 5th edition, Springer, New York, Ch. 12, pp506-501,
2010.
[33] R. Halir, J. Flusser, Numerically stable direct laser least squares
fitting of ellipses, Jan. 1988.
[34] A. W. Fitzgibbon, M. Pilu, R. B. Fisher, Direct least squares fitting
of ellipses, IEEE Proceedings of ICPR, Vol. 21 Issue 5, pp. 476-480,
Aug. 1999
[35] R. J. Chen, Z. Y. Lui, Identification of viscoelastic model of fourwire
suspension system in optical pickup actuator, Transactions-
Canadian Society for Mechanical Engineering, Vol. 41 Issue 5, pp. 731-
744, Sep. 2017
[36] 李文、趙惠敏,「分數階控制器設計方法與震動抑制性能分
析」,第一版,科學出版社,北京,2014。
[37] R. J. Chang, Y. H. Lai, Design and implementation of
micromechatronic systems: SMA drive polymer microgripper, Design,
Control and Applications of Mechatronic Systems in Engineering, Ch. 4,
pp. 66-69, May 2017.
[38] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue, V.
Feliu, Fractional-order systems and controls, Springer, New York,
University science books, pp. 221-223, 2010.
[39] T. Takagi, N. Nakajima, Architecture combination by micro
photoforming process, IEEE International Workshop on Micro
Electro Mechanical System, 1994.
[40] M. Mayyas, P. Zhang, W. H. Lee, D. Popa, and J. C. Chiao, “An
active micro joining mechanism for 3D assembly, Micromechanics and
Microengineering, 2009 .
[41] K. Alblalaihid1, J. Overton, S. Lawes, P. Kinnell, “Corrigendum: A
3D-printed polymer micro-gripper with self-defined electrical tracks and
thermal actuator, Journal of Micromechanics and Microengineering,
Vol. 27, Num. 8, 2017.
[42] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B.
Mosadegh, K.Bertoldi1, G. M. Whitesides, R. J. Wood, “A 3D-printed,
functionally graded soft robot powered by combustion, Science, Vol.
349, Issue 6244, pp. 161-165, 2015
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊