[1]蔡諄樺, 脊椎手術輔助訓練系統設計與製作, 國立成功大學機械工程研究所碩士論文, 2004.[2]顏毓宏, 智慧型脊椎手術導航流程與訓練系統之研發, 國立成功大學機械工程研究所碩士論文, 2007.[3]侯誠育, 脊椎椎足鑽孔手術導引定位建之研發, 國立成功大學機械工程研究所碩士論文, 2009.[4]莊禮魁, 應用於脊椎後固定術之光學式脊椎椎足鑽孔導航系統, 國立成功大學機械工程研究所碩士論文, 2010.[5]鎖皓泉, 應用於椎體成形術之 C-arm穿刺導引雛型系統, 國立成功大學機械工程研究所碩士論文, 2014.[6]黃上瑋, 螺桿機構與慣性量測單元應用於C-arm經皮穿刺導引系統, 國立成功大學機械工程研究所碩士論文, 2016.[7]吳承穎, 可攜式經皮椎體成形術導引系統的實現, 國立成功大學機械工程研究所碩士論文, 2017.[8]周以和, 醫學內視鏡的發展與應用, 高醫醫訊月刊, Vol.36, No.8, 2017.
[9]Yeung, A. T., The evolution of percutaneous spinal endoscopy and discectomy: state of the art, The Mount Sinai journal of medicine, New York, Vol.67, No.4, pp.327-332, 2000.
[10]Yeung, A. T. and Tsou, P. M., Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases, Spine, Vol.27, No.7, pp.722-731, 2002.
[11]Yeung, A. T. and Yeung, C. A., Advances in endoscopic disc and spine surgery: foraminal approach, Surgical technology international, Vol.11, pp.255-263, 2003.
[12]Hoogland, T., Schubert, M., Miklitz, B., and Ramirez, A., Transforaminal posterolateral endoscopic discectomy with or without the combination of a low-dose chymopapain: a prospective randomized study in 280 consecutive cases, Spine, Vol.31, No.24, pp.E890-E897, 2006.
[13]Sanusi, T., Davis, J., Nicassio, N., and Malik, I., Endoscopic lumbar discectomy under local anesthesia may be an alternative to microdiscectomy: A single centre's experience using the far lateral approach, Clinical neurology and neurosurgery, Vol.139, pp.324-327, 2015.
[14]江青芬, 從 2D 到 3D 的醫學影像, 科學發展, Vol.503, No.3, pp.24-30, 2014.
[15]Jee, H., Lee, J.-H., Park, K. D., Ahn, J., and Park, Y., Ultrasound-guided versus fluoroscopy-guided sacroiliac joint intra-articular injections in the noninflammatory sacroiliac joint dysfunction: a prospective, randomized, single-blinded study, Archives of physical medicine and rehabilitation, Vol.95, No.2, pp.330-337, 2014.
[16]Amber, K. T., Landy, D. C., Amber, I., Knopf, D., and Guerra, J., Comparing the accuracy of ultrasound versus fluoroscopy in glenohumeral injections: a systematic review and meta‐analysis, Journal of Clinical Ultrasound, Vol.42, No.7, pp.411-416, 2014.
[17]Clark, J. C., Jasmer, G., Marciano, F. F., and Tumialan, L. M., Minimally invasive transforaminal lumbar interbody fusions and fluoroscopy: a low-dose protocol to minimize ionizing radiation, Neurosurgical focus, Vol.35, No.2, p.E8, 2013.
[18]Hofstetter, R., Slomczykowski, M., Sati, M., and Nolte, L.-P., Fluoroscopy as an imaging means for computer-assisted surgical navigation, Computer Aided Surgery, Vol.4, No.2, pp.65-76, 1999.
[19]Wiesner, L., Kothe, R., Schulitz, K.-P., and Rüther, W., Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine, Spine, Vol.25, No.5, pp.615-621, 2000.
[20]Jaffray, D. A., Siewerdsen, J. H., Wong, J. W., and Martinez, A. A., Flat-panel cone-beam computed tomography for image-guided radiation therapy, International Journal of Radiation Oncology* Biology* Physics, Vol.53, No.5, pp.1337-1349, 2002.
[21]Rafferty, M. A., Siewerdsen, J. H., Chan, Y., Moseley, D. J., Daly, M. J., Jaffray, D. A., and Irish, J. C., Investigation of C‐arm cone‐beam CT‐guided surgery of the frontal recess, The Laryngoscope, Vol.115, No.12, pp.2138-2143, 2005.
[22]Siewerdsen, J., Moseley, D., Burch, S., Bisland, S., Bogaards, A., Wilson, B., and Jaffray, D., Volume CT with a flat‐panel detector on a mobile, isocentric C‐arm: Pre‐clinical investigation in guidance of minimally invasive surgery, Medical physics, Vol.32, No.1, pp.241-254, 2005.
[23]Peters, T. M., Image-guidance for surgical procedures, Physics in Medicine & Biology, Vol.51, No.14, p.R505, 2006.
[24]Pohlenz, P., Blessmann, M., Blake, F., Heinrich, S., Schmelzle, R., and Heiland, M., Clinical indications and perspectives for intraoperative cone-beam computed tomography in oral and maxillofacial surgery, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.103, No.3, pp.412-417, 2007.
[25]Kim, C. W., Lee, Y.-P., Taylor, W., Oygar, A., and Kim, W. K., Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery, The Spine Journal, Vol.8, No.4, pp.584-590, 2008.
[26]Ni, W.-F., Huang, Y.-X., Chi, Y.-L., Xu, H.-Z., Lin, Y., Wang, X.-Y., Huang, Q.-S., and Mao, F.-M., Percutaneous pedicle screw fixation for neurologic intact thoracolumbar burst fractures, Clinical Spine Surgery, Vol.23, No.8, pp.530-537, 2010.
[27]Tjardes, T., Shafizadeh, S., Rixen, D., Paffrath, T., Bouillon, B., Steinhausen, E. S., and Baethis, H., Image-guided spine surgery: state of the art and future directions, European Spine Journal, Vol.19, No.1, pp.25-45, 2010.
[28]Tormenti, M. J., Kostov, D. B., Gardner, P. A., Kanter, A. S., Spiro, R. M., and Okonkwo, D. O., Intraoperative computed tomography image–guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery, Neurosurgical focus, Vol.28, No.3, p.E11, 2010.
[29]Oertel, M. F., Hobart, J., Stein, M., Schreiber, V., and Scharbrodt, W., Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging, Journal of Neurosurgery: Spine, Vol.14, No.4, pp.532-536, 2011.
[30]Tabaraee, E., Gibson, A. G., Karahalios, D. G., Potts, E. A., Mobasser, J.-P., and Burch, S., Intraoperative cone beam–computed tomography with navigation (O-ARM) versus conventional fluoroscopy (C-ARM): a cadaveric study comparing accuracy, efficiency, and safety for spinal instrumentation, Spine, Vol.38, No.22, pp.1953-1958, 2013.
[31]Rahmathulla, G., Nottmeier, E. W., Pirris, S. M., Deen, H. G., and Pichelmann, M. A., Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance, Neurosurgical focus, Vol.36, No.3, p.E3, 2014.
[32]Kim, T. T., Johnson, J. P., Pashman, R., and Drazin, D., Minimally invasive spinal surgery with intraoperative image-guided navigation, BioMed research international, Vol.2016, 2016.
[33]Park, P., Foley, K. T., Cowan Jr, J. A., and La Marca, F., Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results, Surgical neurology international, Vol.1, 2010.
[34]Patil, S., Lindley, E. M., Burger, E. L., Yoshihara, H., and Patel, V. V., Pedicle screw placement with O-arm and stealth navigation, Orthopedics, Vol.35, No.1, pp.e61-e65, 2012.
[35]Ohba, T., Ebata, S., Fujita, K., Sato, H., and Haro, H., Percutaneous pedicle screw placements: accuracy and rates of cranial facet joint violation using conventional fluoroscopy compared with intraoperative three-dimensional computed tomography computer navigation, European Spine Journal, Vol.25, No.6, pp.1775-1780, 2016.
[36]Guha, D., Jakubovic, R., Gupta, S., Alotaibi, N. M., Cadotte, D., da Costa, L. B., George, R., Heyn, C., Howard, P., and Kapadia, A., Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy, The Spine Journal, Vol.17, No.4, pp.489-498, 2017.
[37]Guha, D., Jakubovic, R., Gupta, S., and Yang, V. X., Spinal intra-operative three-dimensional navigation with infra-red tool tracking: correlation between clinical and absolute engineering accuracy, in Clinical and Translational Neurophotonics, p.100500I, 2017.
[38]Merloz, P., Tonetti, J., Pittet, L., Coulomb, M., Lavallee, S., and Sautot, P., Pedicle screw placement using image guided techniques, Clinical Orthopaedics and Related Research®, Vol.354, pp.39-48, 1998.
[39]Wood, M. and Mannion, R., A comparison of CT-based navigation techniques for minimally invasive lumbar pedicle screw placement, Clinical Spine Surgery, Vol.24, No.1, pp.E1-E5, 2011.
[40]Sterba, W., Kim, D.-G., Fyhrie, D. P., Yeni, Y. N., and Vaidya, R., Biomechanical analysis of differing pedicle screw insertion angles, Clinical biomechanics, Vol.22, No.4, pp.385-391, 2007.
[41]Mirkovic, S., Abitbol, J., Steinman, J., Edwards, C., Schaffler, M., Massie, J., and Garfin, S., Anatomic consideration for sacral screw placement, Spine, Vol.16, No.6 Suppl, pp.S289-94, 1991.
[42]Ughwanogho, E., Patel, N. M., Baldwin, K. D., Sampson, N. R., and Flynn, J. M., Computed tomography–guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal, Spine, Vol.37, No.8, pp.E473-E478, 2012.
[43]Ravi, B., Zahrai, A., and Rampersaud, R., Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws, Spine, Vol.36, No.1, pp.84-91, 2011.
[44]Elmi-Terander, A., Nachabe, R., Skulason, H., Pedersen, K., Söderman, M., Racadio, J., Babic, D., Gerdhem, P., and Edström, E., Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology, Spine, Vol.43, No.14, p.1018, 2018.
[45]Medtronic, StealthStation Surgical Navigation System.
[46]Whyne, C., The O-arm Surgical Imaging System, (https://sunnybrook.ca/research/content/?page=sri-core-oarm-stealthstation-equipment), accessed on 8 March 2019.
[47]Stryker, NAV3i® Platform.
[48]Theodore, N. and Ahmed, A. K., The history of robotics in spine surgery, Spine, Vol.43, No.7S, p.S23, 2018.
[49]Sukovich, W., Brink‐Danan, S., and Hardenbrook, M., Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist®, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol.2, No.2, pp.114-122, 2006.
[50]Devito, D. P., Kaplan, L., Dietl, R., Pfeiffer, M., Horne, D., Silberstein, B., Hardenbrook, M., Kiriyanthan, G., Barzilay, Y., and Bruskin, A., Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study, Spine, Vol.35, No.24, pp.2109-2115, 2010.
[51]Hu, X., Ohnmeiss, D. D., and Lieberman, I. H., Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients, European Spine Journal, Vol.22, No.3, pp.661-666, 2013.
[52]Overley, S. C., Cho, S. K., Mehta, A. I., and Arnold, P. M., Navigation and robotics in spinal surgery: where are we now?, Neurosurgery, Vol.80, No.3S, pp.S86-S99, 2017.
[53]Khan, A., Meyers, J. E., Siasios, I., and Pollina, J., Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve, Operative Neurosurgery, 2018.
[54]Khan, A., Meyers, J. E., Yavorek, S., O'Connor, T. E., Siasios, I., Mullin, J. P., and Pollina, J., Comparing Next-Generation Robotic Technology with 3-Dimensional Computed Tomography Navigation Technology for the Insertion of Posterior Pedicle Screws, World neurosurgery, 2018.
[55]Han, X., Tian, W., Liu, Y., Liu, B., He, D., Sun, Y., Han, X., Fan, M., Zhao, J., and Xu, Y., Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial, Journal of Neurosurgery: Spine, Vol.1, No.aop, pp.1-8, 2019.
[56]Godzik, J., Walker, C. T., Hartman, C., de Andrada, B., Morgan, C. D., Mastorakos, G., Chang, S., Turner, J., Porter, R. W., and Snyder, L., A Quantitative Assessment of the Accuracy and Reliability of Robotically Guided Percutaneous Pedicle Screw Placement: Technique and Application Accuracy, Operative Neurosurgery, 2019.
[57]Medtronic, MAZOR X WORKSTATION, (https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/spine-robotics/mazorx/technical-specifications.html), accessed on 8 March 2019.
[58]Benech, EXCELSIUS GPS robotic navigation, (https://www.benech-neurochirurgia.it/en/robotic-assisted-surgery), accessed on 8 March 2019.
[59]Kim, H. J., Jung, W. I., Chang, B. S., Lee, C. K., Kang, K. T., and Yeom, J. S., A prospective, randomized, controlled trial of robot‐assisted vs freehand pedicle screw fixation in spine surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol.13, No.3, p.e1779, 2017.
[60]Hu, X. and Lieberman, I. H., What is the learning curve for robotic-assisted pedicle screw placement in spine surgery?, Clinical Orthopaedics and Related Research®, Vol.472, No.6, pp.1839-1844, 2014.
[61]Gelalis, I. D., Paschos, N. K., Pakos, E. E., Politis, A. N., Arnaoutoglou, C. M., Karageorgos, A. C., Ploumis, A., and Xenakis, T. A., Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques, European Spine Journal, Vol.21, No.2, pp.247-255, 2012.
[62]Laudato, P. A., Pierzchala, K., and Schizas, C., Pedicle screw insertion accuracy using o-arm, robotic guidance, or freehand technique, Spine, Vol.43, No.6, pp.E373-E378, 2018.
[63]Mathew, J. E., Mok, K., and Goulet, B., Pedicle violation and navigational errors in pedicle screw insertion using the intraoperative O-arm: a preliminary report, International journal of spine surgery, Vol.7, pp.e88-e94, 2013.
[64]Miller, C. A., Ledonio, C. G., Hunt, M. A., Siddiq, F., and Polly, D. W., Reliability of the planned pedicle screw trajectory versus the actual pedicle screw trajectory using intra-operative 3D CT and image guidance, International journal of spine surgery, Vol.10, p.38, 2016.
[65]Kleck, C. J., Cullilmore, I., LaFleur, M., Lindley, E., Rentschler, M. E., Burger, E. L., Cain, C. M., and Patel, V. V., A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy, European Spine Journal, Vol.25, No.6, pp.1764-1774, 2016.
[66]Lefranc, M. and Peltier, J., Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® Spine robot with intraoperative flat-panel CT guidance—a cadaver study, Journal of robotic surgery, Vol.9, No.4, pp.331-338, 2015.
[67]Healthcare, G., OEC Fluorostar 7900 Digital Mobile C-arm, (http://www3.gehealthcare.com.sg/en-gb/products/categories/surgical_imaging/pain_management/oec_fluorostar_7900), accessed on 16 April 2019.
[68]Healthineers, S., Siremobil Compact L, (http://www.healthcare.siemens.com/surgical-c-arms-and-navigation/mobile-c-arms/siremobil-compact-l), accessed on 16 April 2019.
[69]方晶晶 Fang, J.-J., 林瑞模 Lin, R.-M., 林政立 Lin, C.-L., 鎖皓泉 So, H.-C., 吳承穎 Wu, C.-Y., and 林俊仲 Lin, C.-C., 脊椎經皮穿刺導引系統與穿刺方位規劃方法.
[70]Formlabs, Dental LT Clear, (https://formlabs-media.formlabs.com/datasheets/Dental_LT_Clear_Technical.pdf), accessed on 16 August 2019
[71]Renshape, Renshape SL 7580, (http://www.rapidtech.com.tw/pdf/SL%207580.), accessed on 16 April 2019.
[72]方晶晶、吳東錦、吳承穎, 基於活動式校正板的X光機影像校正定位方法, 中華民國專利I611249, 2017/3/9申請, 2018/1/11生效, 2018/1/11~2037/3/8.
[73]OpenCV, OpenCV, (http://opencv.org/), accessed on 16 April 2019.
[74]Imebra, Imebra DICOM SDK, (https://imebra.com/), accessed on 16 April 2019.
[75]Making Sure Pedicle Screws are Correctly Placed During Spine Surgery, 2019, (https://mmcneuro.wordpress.com/2013/02/28/making-sure-pedicle-screws-are-correctly-placed-during-spine-surgery/), accessed on 7 August 2019.
[76]Technologies, S., MicroScribe MX, accessed on 10 June 2019.