跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊仲
研究生(外文):Chun-ChungLin
論文名稱:脊椎經皮穿刺導引系統精進與體外試驗
論文名稱(外文):Refinement and in Vitro Verification of Percutaneous Pedicle Guiding System
指導教授:方晶晶方晶晶引用關係
指導教授(外文):Jing-Jing Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:189
中文關鍵詞:經皮脊椎手術手術導引系統
外文關鍵詞:percutaneous vertebroplastyC-armsurgical guideT-barCross-bar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技日新月異,電腦輔助手術導航系統成為醫學工程領域重要研究方向之一,為了提高手術安全性、精準度與可預測的結果,骨科手術中,用於骨釘固定的導航系統不在少數,為現代經皮手術中不可或缺的技術。相對於開放式手術經皮手術傷口小失血量低,可降低感染,加速患者復原速度。由於是經皮,穿刺精準度是該治療方法最大的風險,本研究的主要目的是建立精準穿刺參考路徑,降低經皮術中X光的拍攝次數,同時加速新執業醫師的養成訓練。為了達到上述臨床目標,先前研究提出PV系統,使用兩張C-arm影像與持針機構規劃並導引穿刺路徑,建立穿刺精準度量化方法,降低X光拍攝量,以假體實驗驗證可行。
為了使PV系統符合臨床需求,本研究提出結合專家經驗規劃技巧,於軟體內建立定位塊樣板資料庫,以提高軟體計算精度。為了更提升硬體系統精度,重新設計T-bar機構,解決前期機構存在的問題,依據使用者須進行雙側施打需求設計Cross-bar,並透過結構精度驗證實驗取得系統硬體的穿刺精度,得到針尖點平均誤差1.018±0.428mm。假體模擬實驗,獲得針尖點平均誤差從9.27±6.15mm下降到3.48±1.18 mm,系統平均拍攝X光張數從9.00±1.14張下降至5.86±0.91張,實驗平均耗時從1482±314秒下降至401.73±49.90秒。本研究精進PV系統精度,若能解決機構與體表的固定做法,精度足可達腰椎經皮誤差2.0mm需求,可進入人體臨床試驗。
Due to current progress in biomedical technology, computer-assisted surgical navigation system becomes one of the important research fields in biomedical engineering. In order to improve the safety, accuracy and predictable outcomes of surgery, several available navigation systems using in spine surgery targeting pedicle screw insertion had been applied. Compare to open surgery, there are serveral significant reductions in blood loss, less of hospital stay and infection rates in percutaneous ways of surgery. Precision of percutaneous puncture is the major concern. Main purpose of this research is to establish a safety puncture trajectories during percutaneous puncture through pedicles of vertebras. In order to reduce the amount of X-ray taken, and also to reduce the learning curve of junior physicians, our previous study proposed a PV (Percutaneous Vertebroplasty) system, which uses only AP and Lat. X-ray image sourse in operation room with a needle-holder mechanism to plan and guide the puncture trajectory. We have evaluate the the percutaneous puncture system, and the amount of X-ray image taken, by in vitro experiment.

We refined and developed the PV system to meet the clinical needs. In this study, we embedded an expert-based planning tool, established locator sampling database in the planning software to increase the image manifold of the software. Moreover, we have redesigned the T-bar mechanism to solve the problems occurs in early stage in order to decrease the errors of the hardware. Nevertheless, the previous T-bar, we named it Cross-bar, wasdesigned for bi-lateral puncture accordingly. The puncture errors of the hardware structure in average is 1.018±0.428mm between planning and practical endpoints of the needles. In in vitro experiment, error of the needle tip was decreased from 9.27±6.15mm to 3.605±1.282 mm in average, and amount of X-rays taken was decreased from 9.00±1.14 to 5.80±0.89 in average, and time consume was decreased from 1482± 314 seconds to 407.084 ± 63.750 seconds in average. This study refined the PV system. Necessary accuracy in pedicle puncture of lumbar vertebra could meet the clinical requirement of 2.0mm, in which we may transfer the system using in clinical trial.
摘要 I
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIV
第一章 前言 1
1.1 研究背景 3
1.2 研究動機與目的 5
1.3 本文架構 6
第二章 文獻回顧 8
2.1 脊椎最小侵入式手術方法 8
2.2 光學式導航系統 11
2.3 機械臂輔助導航系統 16
2.4 各式輔助臨床手術的醫療器材 21
第三章 脊椎經皮穿刺導引系統 26
3.1 系統架構 26
3.1.1 硬體架構 27
3.1.2 軟體架構 33
3.2 系統操作流程 38
3.3 腰椎路徑規劃專家經驗 44
第四章 可調式穿刺導引機構 48
4.1 機構設計需求 48
4.2 可調式穿刺導引機構之設計 52
4.2.1 導引機構設計 52
4.2.2 新型可調式導引機構 58
4.3 雙側可調式導引機構 64
4.3.1 雙側機構設計 64
4.3.2 雙側可調式穿刺導引機構 67
第五章 系統精度及穩定度驗證 71
5.1 系統精度驗證 71
5.1.1 實驗方法 71
5.1.2 實驗結果 76
5.2 系統穩定度驗證 80
5.2.1 實驗設計 81
5.2.2 實驗結果 85
5.2.3 討論 98
5.3 小結 102
第六章 討論結論與未來展望 104
6.1 討論 105
6.2 結論 107
6.3 未來展望 109
參考文獻 112
附錄A 精度驗證實驗 126
附錄B 假體實驗 129
附錄C 假體實驗骨釘分級結果 153
[1]蔡諄樺, 脊椎手術輔助訓練系統設計與製作, 國立成功大學機械工程研究所碩士論文, 2004.
[2]顏毓宏, 智慧型脊椎手術導航流程與訓練系統之研發, 國立成功大學機械工程研究所碩士論文, 2007.
[3]侯誠育, 脊椎椎足鑽孔手術導引定位建之研發, 國立成功大學機械工程研究所碩士論文, 2009.
[4]莊禮魁, 應用於脊椎後固定術之光學式脊椎椎足鑽孔導航系統, 國立成功大學機械工程研究所碩士論文, 2010.
[5]鎖皓泉, 應用於椎體成形術之 C-arm穿刺導引雛型系統, 國立成功大學機械工程研究所碩士論文, 2014.
[6]黃上瑋, 螺桿機構與慣性量測單元應用於C-arm經皮穿刺導引系統, 國立成功大學機械工程研究所碩士論文, 2016.
[7]吳承穎, 可攜式經皮椎體成形術導引系統的實現, 國立成功大學機械工程研究所碩士論文, 2017.
[8]周以和, 醫學內視鏡的發展與應用, 高醫醫訊月刊, Vol.36, No.8, 2017.
[9]Yeung, A. T., The evolution of percutaneous spinal endoscopy and discectomy: state of the art, The Mount Sinai journal of medicine, New York, Vol.67, No.4, pp.327-332, 2000.
[10]Yeung, A. T. and Tsou, P. M., Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases, Spine, Vol.27, No.7, pp.722-731, 2002.
[11]Yeung, A. T. and Yeung, C. A., Advances in endoscopic disc and spine surgery: foraminal approach, Surgical technology international, Vol.11, pp.255-263, 2003.
[12]Hoogland, T., Schubert, M., Miklitz, B., and Ramirez, A., Transforaminal posterolateral endoscopic discectomy with or without the combination of a low-dose chymopapain: a prospective randomized study in 280 consecutive cases, Spine, Vol.31, No.24, pp.E890-E897, 2006.
[13]Sanusi, T., Davis, J., Nicassio, N., and Malik, I., Endoscopic lumbar discectomy under local anesthesia may be an alternative to microdiscectomy: A single centre's experience using the far lateral approach, Clinical neurology and neurosurgery, Vol.139, pp.324-327, 2015.
[14]江青芬, 從 2D 到 3D 的醫學影像, 科學發展, Vol.503, No.3, pp.24-30, 2014.
[15]Jee, H., Lee, J.-H., Park, K. D., Ahn, J., and Park, Y., Ultrasound-guided versus fluoroscopy-guided sacroiliac joint intra-articular injections in the noninflammatory sacroiliac joint dysfunction: a prospective, randomized, single-blinded study, Archives of physical medicine and rehabilitation, Vol.95, No.2, pp.330-337, 2014.
[16]Amber, K. T., Landy, D. C., Amber, I., Knopf, D., and Guerra, J., Comparing the accuracy of ultrasound versus fluoroscopy in glenohumeral injections: a systematic review and meta‐analysis, Journal of Clinical Ultrasound, Vol.42, No.7, pp.411-416, 2014.
[17]Clark, J. C., Jasmer, G., Marciano, F. F., and Tumialan, L. M., Minimally invasive transforaminal lumbar interbody fusions and fluoroscopy: a low-dose protocol to minimize ionizing radiation, Neurosurgical focus, Vol.35, No.2, p.E8, 2013.
[18]Hofstetter, R., Slomczykowski, M., Sati, M., and Nolte, L.-P., Fluoroscopy as an imaging means for computer-assisted surgical navigation, Computer Aided Surgery, Vol.4, No.2, pp.65-76, 1999.
[19]Wiesner, L., Kothe, R., Schulitz, K.-P., and Rüther, W., Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine, Spine, Vol.25, No.5, pp.615-621, 2000.
[20]Jaffray, D. A., Siewerdsen, J. H., Wong, J. W., and Martinez, A. A., Flat-panel cone-beam computed tomography for image-guided radiation therapy, International Journal of Radiation Oncology* Biology* Physics, Vol.53, No.5, pp.1337-1349, 2002.
[21]Rafferty, M. A., Siewerdsen, J. H., Chan, Y., Moseley, D. J., Daly, M. J., Jaffray, D. A., and Irish, J. C., Investigation of C‐arm cone‐beam CT‐guided surgery of the frontal recess, The Laryngoscope, Vol.115, No.12, pp.2138-2143, 2005.
[22]Siewerdsen, J., Moseley, D., Burch, S., Bisland, S., Bogaards, A., Wilson, B., and Jaffray, D., Volume CT with a flat‐panel detector on a mobile, isocentric C‐arm: Pre‐clinical investigation in guidance of minimally invasive surgery, Medical physics, Vol.32, No.1, pp.241-254, 2005.
[23]Peters, T. M., Image-guidance for surgical procedures, Physics in Medicine & Biology, Vol.51, No.14, p.R505, 2006.
[24]Pohlenz, P., Blessmann, M., Blake, F., Heinrich, S., Schmelzle, R., and Heiland, M., Clinical indications and perspectives for intraoperative cone-beam computed tomography in oral and maxillofacial surgery, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.103, No.3, pp.412-417, 2007.
[25]Kim, C. W., Lee, Y.-P., Taylor, W., Oygar, A., and Kim, W. K., Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery, The Spine Journal, Vol.8, No.4, pp.584-590, 2008.
[26]Ni, W.-F., Huang, Y.-X., Chi, Y.-L., Xu, H.-Z., Lin, Y., Wang, X.-Y., Huang, Q.-S., and Mao, F.-M., Percutaneous pedicle screw fixation for neurologic intact thoracolumbar burst fractures, Clinical Spine Surgery, Vol.23, No.8, pp.530-537, 2010.
[27]Tjardes, T., Shafizadeh, S., Rixen, D., Paffrath, T., Bouillon, B., Steinhausen, E. S., and Baethis, H., Image-guided spine surgery: state of the art and future directions, European Spine Journal, Vol.19, No.1, pp.25-45, 2010.
[28]Tormenti, M. J., Kostov, D. B., Gardner, P. A., Kanter, A. S., Spiro, R. M., and Okonkwo, D. O., Intraoperative computed tomography image–guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery, Neurosurgical focus, Vol.28, No.3, p.E11, 2010.
[29]Oertel, M. F., Hobart, J., Stein, M., Schreiber, V., and Scharbrodt, W., Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging, Journal of Neurosurgery: Spine, Vol.14, No.4, pp.532-536, 2011.
[30]Tabaraee, E., Gibson, A. G., Karahalios, D. G., Potts, E. A., Mobasser, J.-P., and Burch, S., Intraoperative cone beam–computed tomography with navigation (O-ARM) versus conventional fluoroscopy (C-ARM): a cadaveric study comparing accuracy, efficiency, and safety for spinal instrumentation, Spine, Vol.38, No.22, pp.1953-1958, 2013.
[31]Rahmathulla, G., Nottmeier, E. W., Pirris, S. M., Deen, H. G., and Pichelmann, M. A., Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance, Neurosurgical focus, Vol.36, No.3, p.E3, 2014.
[32]Kim, T. T., Johnson, J. P., Pashman, R., and Drazin, D., Minimally invasive spinal surgery with intraoperative image-guided navigation, BioMed research international, Vol.2016, 2016.
[33]Park, P., Foley, K. T., Cowan Jr, J. A., and La Marca, F., Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results, Surgical neurology international, Vol.1, 2010.
[34]Patil, S., Lindley, E. M., Burger, E. L., Yoshihara, H., and Patel, V. V., Pedicle screw placement with O-arm and stealth navigation, Orthopedics, Vol.35, No.1, pp.e61-e65, 2012.
[35]Ohba, T., Ebata, S., Fujita, K., Sato, H., and Haro, H., Percutaneous pedicle screw placements: accuracy and rates of cranial facet joint violation using conventional fluoroscopy compared with intraoperative three-dimensional computed tomography computer navigation, European Spine Journal, Vol.25, No.6, pp.1775-1780, 2016.
[36]Guha, D., Jakubovic, R., Gupta, S., Alotaibi, N. M., Cadotte, D., da Costa, L. B., George, R., Heyn, C., Howard, P., and Kapadia, A., Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy, The Spine Journal, Vol.17, No.4, pp.489-498, 2017.
[37]Guha, D., Jakubovic, R., Gupta, S., and Yang, V. X., Spinal intra-operative three-dimensional navigation with infra-red tool tracking: correlation between clinical and absolute engineering accuracy, in Clinical and Translational Neurophotonics, p.100500I, 2017.
[38]Merloz, P., Tonetti, J., Pittet, L., Coulomb, M., Lavallee, S., and Sautot, P., Pedicle screw placement using image guided techniques, Clinical Orthopaedics and Related Research®, Vol.354, pp.39-48, 1998.
[39]Wood, M. and Mannion, R., A comparison of CT-based navigation techniques for minimally invasive lumbar pedicle screw placement, Clinical Spine Surgery, Vol.24, No.1, pp.E1-E5, 2011.
[40]Sterba, W., Kim, D.-G., Fyhrie, D. P., Yeni, Y. N., and Vaidya, R., Biomechanical analysis of differing pedicle screw insertion angles, Clinical biomechanics, Vol.22, No.4, pp.385-391, 2007.
[41]Mirkovic, S., Abitbol, J., Steinman, J., Edwards, C., Schaffler, M., Massie, J., and Garfin, S., Anatomic consideration for sacral screw placement, Spine, Vol.16, No.6 Suppl, pp.S289-94, 1991.
[42]Ughwanogho, E., Patel, N. M., Baldwin, K. D., Sampson, N. R., and Flynn, J. M., Computed tomography–guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal, Spine, Vol.37, No.8, pp.E473-E478, 2012.
[43]Ravi, B., Zahrai, A., and Rampersaud, R., Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws, Spine, Vol.36, No.1, pp.84-91, 2011.
[44]Elmi-Terander, A., Nachabe, R., Skulason, H., Pedersen, K., Söderman, M., Racadio, J., Babic, D., Gerdhem, P., and Edström, E., Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology, Spine, Vol.43, No.14, p.1018, 2018.
[45]Medtronic, StealthStation Surgical Navigation System.
[46]Whyne, C., The O-arm Surgical Imaging System, (https://sunnybrook.ca/research/content/?page=sri-core-oarm-stealthstation-equipment), accessed on 8 March 2019.
[47]Stryker, NAV3i® Platform.
[48]Theodore, N. and Ahmed, A. K., The history of robotics in spine surgery, Spine, Vol.43, No.7S, p.S23, 2018.
[49]Sukovich, W., Brink‐Danan, S., and Hardenbrook, M., Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist®, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol.2, No.2, pp.114-122, 2006.
[50]Devito, D. P., Kaplan, L., Dietl, R., Pfeiffer, M., Horne, D., Silberstein, B., Hardenbrook, M., Kiriyanthan, G., Barzilay, Y., and Bruskin, A., Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study, Spine, Vol.35, No.24, pp.2109-2115, 2010.
[51]Hu, X., Ohnmeiss, D. D., and Lieberman, I. H., Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients, European Spine Journal, Vol.22, No.3, pp.661-666, 2013.
[52]Overley, S. C., Cho, S. K., Mehta, A. I., and Arnold, P. M., Navigation and robotics in spinal surgery: where are we now?, Neurosurgery, Vol.80, No.3S, pp.S86-S99, 2017.
[53]Khan, A., Meyers, J. E., Siasios, I., and Pollina, J., Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve, Operative Neurosurgery, 2018.
[54]Khan, A., Meyers, J. E., Yavorek, S., O'Connor, T. E., Siasios, I., Mullin, J. P., and Pollina, J., Comparing Next-Generation Robotic Technology with 3-Dimensional Computed Tomography Navigation Technology for the Insertion of Posterior Pedicle Screws, World neurosurgery, 2018.
[55]Han, X., Tian, W., Liu, Y., Liu, B., He, D., Sun, Y., Han, X., Fan, M., Zhao, J., and Xu, Y., Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial, Journal of Neurosurgery: Spine, Vol.1, No.aop, pp.1-8, 2019.
[56]Godzik, J., Walker, C. T., Hartman, C., de Andrada, B., Morgan, C. D., Mastorakos, G., Chang, S., Turner, J., Porter, R. W., and Snyder, L., A Quantitative Assessment of the Accuracy and Reliability of Robotically Guided Percutaneous Pedicle Screw Placement: Technique and Application Accuracy, Operative Neurosurgery, 2019.
[57]Medtronic, MAZOR X WORKSTATION, (https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/spine-robotics/mazorx/technical-specifications.html), accessed on 8 March 2019.
[58]Benech, EXCELSIUS GPS robotic navigation, (https://www.benech-neurochirurgia.it/en/robotic-assisted-surgery), accessed on 8 March 2019.
[59]Kim, H. J., Jung, W. I., Chang, B. S., Lee, C. K., Kang, K. T., and Yeom, J. S., A prospective, randomized, controlled trial of robot‐assisted vs freehand pedicle screw fixation in spine surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol.13, No.3, p.e1779, 2017.
[60]Hu, X. and Lieberman, I. H., What is the learning curve for robotic-assisted pedicle screw placement in spine surgery?, Clinical Orthopaedics and Related Research®, Vol.472, No.6, pp.1839-1844, 2014.
[61]Gelalis, I. D., Paschos, N. K., Pakos, E. E., Politis, A. N., Arnaoutoglou, C. M., Karageorgos, A. C., Ploumis, A., and Xenakis, T. A., Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques, European Spine Journal, Vol.21, No.2, pp.247-255, 2012.
[62]Laudato, P. A., Pierzchala, K., and Schizas, C., Pedicle screw insertion accuracy using o-arm, robotic guidance, or freehand technique, Spine, Vol.43, No.6, pp.E373-E378, 2018.
[63]Mathew, J. E., Mok, K., and Goulet, B., Pedicle violation and navigational errors in pedicle screw insertion using the intraoperative O-arm: a preliminary report, International journal of spine surgery, Vol.7, pp.e88-e94, 2013.
[64]Miller, C. A., Ledonio, C. G., Hunt, M. A., Siddiq, F., and Polly, D. W., Reliability of the planned pedicle screw trajectory versus the actual pedicle screw trajectory using intra-operative 3D CT and image guidance, International journal of spine surgery, Vol.10, p.38, 2016.
[65]Kleck, C. J., Cullilmore, I., LaFleur, M., Lindley, E., Rentschler, M. E., Burger, E. L., Cain, C. M., and Patel, V. V., A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy, European Spine Journal, Vol.25, No.6, pp.1764-1774, 2016.
[66]Lefranc, M. and Peltier, J., Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® Spine robot with intraoperative flat-panel CT guidance—a cadaver study, Journal of robotic surgery, Vol.9, No.4, pp.331-338, 2015.
[67]Healthcare, G., OEC Fluorostar 7900 Digital Mobile C-arm, (http://www3.gehealthcare.com.sg/en-gb/products/categories/surgical_imaging/pain_management/oec_fluorostar_7900), accessed on 16 April 2019.
[68]Healthineers, S., Siremobil Compact L, (http://www.healthcare.siemens.com/surgical-c-arms-and-navigation/mobile-c-arms/siremobil-compact-l), accessed on 16 April 2019.
[69]方晶晶 Fang, J.-J., 林瑞模 Lin, R.-M., 林政立 Lin, C.-L., 鎖皓泉 So, H.-C., 吳承穎 Wu, C.-Y., and 林俊仲 Lin, C.-C., 脊椎經皮穿刺導引系統與穿刺方位規劃方法.
[70]Formlabs, Dental LT Clear, (https://formlabs-media.formlabs.com/datasheets/Dental_LT_Clear_Technical.pdf), accessed on 16 August 2019
[71]Renshape, Renshape SL 7580, (http://www.rapidtech.com.tw/pdf/SL%207580.), accessed on 16 April 2019.
[72]方晶晶、吳東錦、吳承穎, 基於活動式校正板的X光機影像校正定位方法, 中華民國專利I611249, 2017/3/9申請, 2018/1/11生效, 2018/1/11~2037/3/8.
[73]OpenCV, OpenCV, (http://opencv.org/), accessed on 16 April 2019.
[74]Imebra, Imebra DICOM SDK, (https://imebra.com/), accessed on 16 April 2019.
[75]Making Sure Pedicle Screws are Correctly Placed During Spine Surgery, 2019, (https://mmcneuro.wordpress.com/2013/02/28/making-sure-pedicle-screws-are-correctly-placed-during-spine-surgery/), accessed on 7 August 2019.
[76]Technologies, S., MicroScribe MX, accessed on 10 June 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊