|
參考文獻 1.I. Gibson, D. Rosen , and B. Stucker, “Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing Second Edition, Springer, 2010. 2.C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, “Review of selective laser melting: Materials and applications, Applied Physics Reviews, Vol. 2, 041101, 2015. 3.G.K. Lewis and E. Schlienger,“Practical considerations and capabilities for laser assisted direct metal deposition, Materials & Design, Vol. 21, pp. 417-423, 2000. 4.PujaGhosal, Manik Chandra Majumder, Anangamohan Chattopadhyay, “Study on direct laser metal deposition, Vol. 5, Issue. 5, Part 2, pp. 12509-12518, 2018. 5.R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia, “Numerical modeling of the thermal behavior during the LENS® process, Materials Science and Engineering A, Vol. 428, pp. 47-53, 2006. 6.J.C. Heigel, P. Michaleris, and E.W. Reutzel, “Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V, Additive Manufacturing, Vol. 5, pp. 9-19, 2015. 7.M. Hao and Y. Sun, “A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach, International Journal of Heat and Mass Transfer, Vol. 64, pp. 352-360, 2013. 8.L. Wang and S. Felicelli, “Process Modeling in Laser Deposition of Multilayer SS410 Steel, Journal of Manufacturing Science and Engineering, Vol. 129, pp. 1028-1034, 2007. 9.P. Michaleris, “Modeling metal deposition in heat transfer analyses of additive manufacturing processes, Finite Elements in Analysis and Design, Vol. 86, pp. 51-60, 2014. 10.P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, “Analytical and numerical modelling of the direct metal deposition laser process, Journal of Physics D: Applied Physics, Vol. 41, Issue. 2, 2008. 11.朱紅鈞, “FLUENT 15.0流場分析實戰指南, 人民郵電出版社, 2015. 12.L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and M.F. Horstemeyer, “Optimization of the LENS® process for steady molten pool size, Materials Science and Engineering A, Vol. 474, pp. 148-156, 2008. 13.V. Manvatkar, A. De, and T. DebRoy, “Heat transfer and material flow during laser assisted multi-layer additive manufacturing, Journal of Applied Physics, Vol. 116, 124905, 2014. 14.G. Zhu, A. Zhang, D. Li, Y. Tang, Z. Tong, and Q. Lu, “Numerical simulation of thermal behavior during laser direct metal deposition, The International Journal of Advanced Manufacturing Technology, Vol. 55, pp. 945-954, 2011. 15.Tarak Amine,Joseph W. Newkirk, Frank Liou, “Investigation of effect of process parameters on multilayer builds by direct metal deposition, Applied Thermal Engineering, Vol 73, pp. 500-511, 2014. 16.Narendran Raghavan, Ryan Dehoff, Sreekanth Pannala, John Turner, Srdjan Simunovic, Michael Kirka, Neil Carlson, Sudarsanam S. Babu, “ Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing, Acta Materialia, Vol 112, pp. 303-314, 2016. 17.Zhengtao Gan, Hao Liu, Shaoxia Li, Xiuli He, Gang Yu, “Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron, International Journal of Heat and Mass Transfer , Vol 111,pp. 709–722, 2017. 18.BY Y. S. LEE, M. NORDIN, S. S. BABU, AND D. F. FARSON, “Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Article in Welding Journal, August 2014. 19.L.X. Yang, X.F. Peng, and B.X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing, International Journal of Heat and Mass Transfer, Vol. 44, pp. 4465-4473, 2001. 20.V. Fallah, M. Alimardani, S.F. Corbin, and A. Khajepour, “Temporal development of melt-pool morphology and clad geometry in laser powder deposition, Computational Materials Science, Vol. 50, pp. 2124-2134, 2011. 21.J. Zhang, F. Liou, W. Seufzer, and K. Taminger, “A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD), Additive Manufacturing, Vol. 11, pp. 32-39, 2016. 22.Y. Huang, M.B. Khamesee, and E. Toyserkani, “A comprehensive analytical model for laser powder-fed additive manufacturing, Additive Manufacturing, Vol. 12, pp. 90-99, 2016. 23.E. Toyserkani, A. Khajepour, and S. Corbin,“3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process, Optics and Lasers in Engineering, Vol. 41, Issue. 6, pp. 849–867, 2004. 24.J. Xiong, Y. Lei, and R. Li, “Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures, Applied Thermal Engineering, Vol. 126, pp. 43-52, 2017. 25.H. Zhao, G. Zhang, Z. Yin, and L. Wu, “A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping, Journal of Materials Processing Technology, Vol. 211, pp. 488–495, 2011. 26.R. Klein, “Laser Welding of Plastics, Wiley-VCH, 2011. 27.楊隆昌, “雷射發展的趨勢與應用, September, 2014. 28.“Gaussian Beam Optics, Available: http://www.cvimellesgriot.com/.1919–1928, August 1997. 29.S. Louhenkilpi and F. Imre,“A lézersugár jellemzése, Anyagtudományi folyamatszimuláció - Hőkezelés modellezése, 2011. 30.Keiji Fuse, “Flat top Beam Generation and Multi beam Processing Using Aspheric and Diffractive Optics, JLMN-Journal of Laser Micro/Nano engineering, Vol. 5, Issue 2, 2010. 31.Thorlabs (n.d.). Damage Thresholds Retrieved August 5, 2019, from http s://www.thorlabs.com/tutorials.cfm?tabID=762473b5-84ee-49eb-8e93-375e0aa803fa. 32.Darryl Naidoo, A.Harfouche, Michael Fromager, Kamel Ait-Ameur, Andrew Forbes, “Emission of a propagation in variant flat-top beam from a microchip laser, Journal of Luminescence1, Vol. 70, pp. 750–754, 2016. 33.“RP Photonics Encyclopedia Flat-top Beam, Available: https://www.rp-photoni cs.com/flat_top_beams.html, 2010. 34.李名言,“鎳基合金材質特性介紹, September, 2013. 35.Z. Gan, G. Yu, X. He, and S. Li, “Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel, International Journal of Heat and Mass Transfer, Vol. 104, pp. 28-38, 2017. 36.Zhipeng Pana, Yixuan Feng, Tsung-Pin Hung, Yun-Chen Jiang, Fu-Chuan Hsu, Lung-Tien Wu, Chiu-Feng Lin, Ying-Cheng Lu, Steven Y. Liang, “Heat affected zone in the laser-assisted milling of Inconel 718, Journal of Manufacturing Processes, Vol. 30, pp. 141-147, 2017. 37.Richard Andreotta, Leila Ladani, William Brindley, “Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties, Finite Elements in Analysis and Design, Vol. 135 , pp. 36–43, 2017. 38.J. Yang and F. Wang, “3D finite element temperature field modelling for direct laser fabrication, The International Journal of Advanced Manufacturing Technology, Vol. 43, pp. 1060-1068, 2009. 39.Z. Zhang, P. Farahmand, and R. Kovacevic, “Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser, Materials and Design, Vol. 109, pp. 686-699, 2016. 40.Special Metals Corporation, “INCONEL alloy 718, Issue. SMC-045, September 2007. 41.Herwig Hosaeus, Achim Seifter, Erhard Kaschnitz, Gernot Pottlacher, “Thermophysical properties of solid and liquid Inconel 718 alloy, High Temperatures High Pressures, Vol. 33, pp. 405-410, 2001. 42.Mark Anderson, Rahul Patwa, Yung C. Shin, Laser-assisted machining of Inconel 718 with an economic analysis, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1879–1891, 2006. 43.Z. Gan, H. Liu, S. Li, X. He, and G. Yu, “Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron, International Journal of Heat and Mass Transfer, Vol. 111, pp. 709-722, 2017. 44.Y.A. Cengel,“Heat and Mass Transfer: A Practical Approach, McGraw-Hill, pp. 20, 2006. 45.E.W. Lemmon and R.T. Jacobsen,“Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air, International Journal of Thermophysics, Vol. 25, pp 21-69, 2004.
|