跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳彬
研究生(外文):Kar-PengGoh
論文名稱:奈米石墨烯/銅顆粒強化羥丙基甲基纖維素複合生物高分子膜之機械、電性及磨潤特性研究
論文名稱(外文):Mechanical, electrical and tribological properties of nano-graphene/copper reinforced hydroxypropyl methylcellulose biopolymer composite film
指導教授:施士塵
指導教授(外文):Shih-Chen Shi
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:羥丙基甲基纖維素奈米石墨烯絕緣磨潤三防漆
外文關鍵詞:Hydroxypropyl methylcellulosenano-grapheneconformal coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三防漆,具有防水、絕緣、保護及耐磨耗等特性的一種保護膜,一般噴塗於電路板上以提升電路板的使用壽命。鑑於羥丙基甲基纖維素(Hydroxypropyl Methylcellulose) 所具有的透明性在給予保護的同時也能方便使用者觀察電路板上的零部件的狀況,吾人將奈米石墨烯/銅顆粒作為添加物加入羥丙基甲基纖維素形成複合膜,強化其性質使其得以取代不透明的環氧樹脂(Epoxy)。
研究主要探討純HPMC及添加 0.1 wt. %、0.2 wt. %、0.3 wt. %、0.4 wt. % 和0.5 wt. % 奈米石墨烯/銅顆粒形成的複合膜的比較。由於薄膜透明度會隨著添加物的濃度上升而下降,所以多餘0.5 wt. % 的情況不作討論。
研究顯示添加奈米石墨烯/銅顆粒除了可以強化羥丙基甲基纖維素的楊氏模數外;添加物會在複合膜內形成屏障作用導致電阻率上升,跨入絕緣體電阻值的規定範圍即大於106 Ω-cm;加入奈米石墨烯/銅顆粒在磨耗過程中能避免羥丙基甲基纖維素的直接磨耗,降低薄膜的摩擦係數、磨耗體積以及磨耗率;並且羥丙基甲基纖維素原本的親水特性也會因為加入偏疏水性的奈米石墨烯而改變,成為疏水膜。
Nano-graphene/copper was used as nano additives to reinforce hydroxypropyl methylcellulose(HPMC) to form biopolymer composite film with better mechanical, electrical and tribological properties which prepared by solvent evaporated method and microtubule titration. Our aim is to replace epoxy as conformal coating material which provide protection for circuit boards with the function of waterproof, insulation and wear resistance. The tribological behavior of the composite films were investigated with the ball-on-disk tribometer under the condition : sliding speed of 0.03 m/s, normal load of 2 N and counterface roughness of 0.08 µm Ra. Scanning electron microscopy was used to observe the surface morphologies and worn surfaces. Raman spectroscopy was used to analysis the chemistry at the worn surfaces. The surface roughness, wear volume and wear rate were studied by 3D Optical Profiler. Stress-strain curve was made to investigate Young’s Modulus, ultimate tensile strength and elongation of the composite film by micro-tensile-compression-tester. Its resistivity and mobility were measured by Hall Effect Analyzer. Contact angle meter was used to measure the contact angle of the composite film to define whether it is hydrophobic or hydrophilic.
The nano additives added were found to form barrier effect in the composite film result in the increase of resistivity making it to reach the target as an insulator. The wear volume, wear rate and coefficient of friction were decreased which imply that add-in of nano-graphene/copper did bring benefit to its tribological behavior. The hydrophobic characteristic of graphene made the HPMC which should be hydrophilic become hydrophobic as well. The result of 0.3 wt. % add-in reach most of our targets.
口試合格證明 I
摘要 II
SUMMARY III
誌謝 XV
總目錄 XVI
表目錄 XVIII
圖目錄 XIX
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
第2章 文獻回顧 4
2-1 主材料介紹 4
2-1-1 石墨烯 4
2-1-2 生長在銅上的石墨烯 8
2-1-3 羥丙基甲基纖維素 13
2-1-4 環氧樹脂 15
2-2 機械性質 16
2-3 電性 18
2-4 磨潤 20
2-4-1 綠色磨潤 20
2-4-2 聚合物奈米複合材料 25
2-4-3 三體理論 25
2-5 親疏水性理論與分析 31
第3章 實驗內容 33
3-1 實驗目的 33
3-2 實驗簡介 33
3-3 實驗流程 34
3-4 實驗方法 35
3-4-1 實驗前處理 35
3-4-2 實驗步驟及實驗參數 36
3-4-3 透光度檢測 40
3-4-4 機械性質檢測 41
3-4-5 電性檢測 43
3-4-6 磨耗試驗與分析 44
3-4-7 組織結構和表面幾何性質分析 46
3-4-8 成分分析 48
3-4-9 水接觸角實驗 50
3-5 實驗設備 51
第4章 結果與討論 54
4-1 透光度檢測 54
4-2 機械性質分析 55
4-3 電性分析 59
4-4 磨潤特性分析 62
4-4-1 表面粗糙度和表面形貌 62
4-4-2 奈米石墨烯/銅顆粒作為添加物之磨潤行為 65
4-4-3 拉曼分析 77
4-5 親疏水性分析 78
4-5-1 奈米石墨烯/銅顆粒複合HPMC接觸角量測 78
4-5-2 電漿表面處理後的接觸角量測及恢復 79
第5章 總結 81
5-1 結論 81
5-2 未來展望 83
參考文獻 84
[1]R. Peierls, Quelques proprietes typiques des corpses solides. Ann. IH Poincare. 5(1935)p. 177-222.
[2]L. Landau, Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion. 11(1937)p. 26-35.
[3]L.D. Landau, E.M. Lifshitz, and L. Pitaevskii, Statistical physics, part I. 1980, pergamon, Oxford.
[4]N.D. Mermin, Crystalline order in two dimensions. Physical Review. 176(1968)p. 250.
[5]J. Venables, G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Reports on Progress in Physics. 47(1984)p. 399.
[6]J. Evans, P. Thiel, and M.C. Bartelt, Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surface Science Reports. 61(2006)p. 1-128.
[7]K. Novoselov, et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. 102(2005)p. 10451-10453.
[8]K.S. Novoselov, et al., Electric Field Effect in Atomically Thin Carbon Films. Science. 306(2004)p. 666-669.
[9]K.S. Novoselov, et al., Two-dimensional gas of massless Dirac fermions in graphene. nature. 438(2005)p. 197.
[10]Y. Zhang, et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. nature. 438(2005)p. 201.
[11]S. Stankovich, et al., Graphene-based composite materials. nature. 442(2006)p. 282.
[12]J.C. Meyer, et al., The structure of suspended graphene sheets. Nature. 446(2007)p. 60.
[13]A.K. Geim and K.S. Novoselov, The rise of graphene. Nature Materials. 6(2007)p. 183.
[14]J.-H. Chen, et al., Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nature nanotechnology. 3(2008)p. 206.
[15]X. Du, et al., Approaching ballistic transport in suspended graphene. Nature nanotechnology. 3(2008)p. 491.
[16]X. Du, et al., Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature. 462(2009)p. 192.
[17]R.R. Nair, et al., Fine structure constant defines visual transparency of graphene. Science. 320(2008)p. 1308-1308.
[18]H. Ulrich and K. Ernst, Untersuchungen über Graphitoxyd. Zeitschrift für anorganische und allgemeine Chemie. 234(1937)p. 311-336.
[19]S. L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft. 31(1898)p. 1481-1487.
[20]W.S. Hummers Jr and R.E. Offeman, Preparation of graphitic oxide. Journal of the american chemical society. 80(1958)p. 1339-1339.
[21]W.A. de Heer, et al., Epitaxial graphene. Solid State Communications. 143(2007)p. 92-100.
[22]Y.-M. Lin, et al., 100-GHz transistors from wafer-scale epitaxial graphene. Science. 327(2010)p. 662-662.
[23]K.S. Kim, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature. 457(2009)p. 706.
[24]S.-Y. Kwon, et al., Growth of semiconducting graphene on palladium. Nano letters. 9(2009)p. 3985-3990.
[25]P.W. Sutter, J.-I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nature materials. 7(2008)p. 406.
[26]J. Coraux, et al., Structural coherency of graphene on Ir (111). Nano letters. 8(2008)p. 565-570.
[27]X. Li, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 324(2009)p. 1312-1314.
[28]S. Bae, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology. 5(2010)p. 574.
[29]T. Ong, et al., Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. Journal of materials research. 7(1992)p. 2429-2439.
[30]S.T. Lee, et al., Heteroepitaxy of carbon on copper by high‐temperature ion implantation. Applied physics letters. 59(1991)p. 785-787.
[31]L. Constant, C. Speisser, and F. Le Normand, HFCVD diamond growth on Cu (111). Evidence for carbon phase transformations by in situ AES and XPS. Surface Science. 387(1997)p. 28-43.
[32]A. Srivastava, et al., Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chemistry of Materials. 22(2010)p. 3457-3461.
[33]D. Wei, et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters. 9(2009)p. 1752-1758.
[34]H. Cao, et al., Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Applied Physics Letters. 96(2010)p. 122106.
[35]W. Cai, et al., Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters. 95(2009)p. 123115.
[36]A. Ismach, et al., Direct chemical vapor deposition of graphene on dielectric surfaces. Nano letters. 10(2010)p. 1542-1548.
[37]Y. Lee, et al., Wafer-scale synthesis and transfer of graphene films. Nano letters. 10(2010)p. 490-493.
[38]M.P. Levendorf, et al., Transfer-free batch fabrication of single layer graphene transistors. Nano letters. 9(2009)p. 4479-4483.
[39]Y.-H. Lee and J.-H. Lee, Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO 2/Si substrate: thermal conductivity of the wafers. Applied Physics Letters. 96(2010)p. 083101.
[40](!!! INVALID CITATION !!!)p.
[41]H.K. Kim and R. Verpoorte, Sample preparation for plant metabolomics. Phytochemical Analysis. 21(2010)p. 4-13.
[42]S.-C. Shi and T.-F. Huang, Raman study of HPMC biopolymer transfer layer formation under tribology test. Optical and Quantum Electronics. 48(2016)p. 532.
[43]W. Jablonska, The use of ATR-FTIR to probe the release mechanism from hydrophilic matrices. 2011, Sheffield Hallam University.
[44]黃騰鋒, 羥丙基甲基纖維素綠色薄膜自我修復與磨潤性質研究. 成功大學機械工程學系學位論文, (2016)p. 1-64.
[45]S.-C. Shi and F.-I. Lu, Biopolymer Green Lubricant for Sustainable Manufacturing. Materials. 9(2016)p. 338.
[46]A. Fatimi, et al., Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization. Acta biomaterialia. 5(2009)p. 3423-3432.
[47]G.A. Burdock, Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and Chemical Toxicology. 45(2007)p. 2341-2351.
[48]M.M. Al-Tabakha, HPMC capsules: current status and future prospects. Journal of Pharmacy & Pharmaceutical Sciences. 13(2010)p. 428-442.
[49]R. Zúñiga, et al., Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure. Carbohydrate polymers. 90(2012)p. 1147-1158.
[50]P.A. Simmons, et al., Conditioning of hydrogel lenses by a multipurpose solution containing an ocular lubricant. Eye & Contact Lens. 27(2001)p. 192&hyhen.
[51]S.-C. Shi, T.-F. Huang, and J.-Y. Wu, Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate. Materials. 8(2015)p. 1738-1751.
[52]S.-C. Shi and T.-F. Huang, Self-Healing Materials for Ecotribology. Materials. 10(2017)p. 91.
[53]吳振宇, 羥丙基甲基纖維素複合薄膜添加二硫化鉬之微結構與磨潤特性研究. 成功大學機械工程學系學位論文, (2016)p. 1-77.
[54]S.-C. Shi, et al., Improving the tribological performance of biopolymer coating with MoS 2 additive. Surface and Coatings Technology, (2016)p.
[55]S.-C. Shi, J.-Y. Wu, and T.-F. Huang, Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant. Optical and Quantum Electronics. 48(2016)p. 474.
[56]A.R. Spurr, A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research. 26(1969)p. 31-43.
[57]L. Chang, et al., Tribological properties of epoxy nanocomposites. Wear. 258(2005)p. 141-148.
[58]N. Dogan and T.H. McHugh, Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. J Food Sci. 72(2007)p. E016-22.
[59]H. Ananda, et al., Microstructures and Electrical Properties of HPMC/PVP Polymer Blend Films Complex with Ferric Chloride (FeCl3). Material Science Research India. 11(2014)p. 153-158.
[60]B. Brennan, et al., Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Applied Surface Science. 403(2017)p. 403-412.
[61]B. Bhushan, Principles and applications of tribology. 1999: John Wiley & Sons.
[62]H. Jost, Tribology: the first 25 years and beyond-achievements,shortcomings and future tasks[tribology as a word and concept.was first enunciated in a British Government Report, published on 9 March 1966(Jost Report)]. Industrial Lubrication and Tribology. 4422-27.
[63]S.-w. Zhang, Erratum to: Green tribology: Fundamentals and future development. Friction. 1(2013)p. 367-367.
[64]M. Nosonovsky and B. Bhushan, Green tribology: principles, research areas and challenges. Philos Trans A Math Phys Eng Sci. 368(2010)p. 4677-94.
[65]O.V. Kharissova, et al., The greener synthesis of nanoparticles. Trends Biotechnol. 31(2013)p. 240-8.
[66]J. of Nanotechnology, Retracted: Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity. Vol. 2019. 2019.
[67]S.M. Alves, et al., Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International. 65(2013)p. 28-36.
[68]L.A. Quinchia, et al., Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribology International. 69(2014)p. 110-117.
[69]V. Rastogi and P. Samyn, Bio-Based Coatings for Paper Applications. Coatings. 5(2015)p. 887-930.
[70]R.P. Wool and X.S. Sun, Bio-Based Polymers and Composites. 2005: Academic Press. 640.
[71]W. Brostow, et al., Microhybrids of metal powder incorporated in polymeric matrices: Friction, mechanical behavior, and microstructure. Polymer Engineering & Science. 48(2008)p. 1977-1981.
[72]O. Olea-Mejia, W. Brostow, and E. Buchman, Wear resistance and wear mechanisms in polymer + metal composites. J Nanosci Nanotechnol. 10(2010)p. 8254-9.
[73]L. Yu, et al., An investigation of the friction and wear behaviors of micrometer copper particle- and nanometer copper particle-filled polyoxymethylene composites. Journal of Applied Polymer Science. 77(2000)p. 2404-2410.
[74]B.A. Krick, et al., Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribology International. 51(2012)p. 42-46.
[75]L.-H. Sun, Z.-G. Yang, and X.-H. Li, Mechanical and tribological properties of polyoxymethylene modified with nanoparticles and solid lubricants. Polymer Engineering & Science. 48(2008)p. 1824-1832.
[76]Q. Wang, Q. Xue, and W. Shen, The friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribology International. 30(1997)p. 193-197.
[77]Q. Wang, X. Zhang, and X. Pei, A Synergistic Effect of Graphite and Nano-CuO on the Tribological Behavior of Polyimide Composites. Journal of Macromolecular Science, Part B. 50(2010)p. 213-224.
[78]S. Bahadur and C. Sunkara, Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear. 258(2005)p. 1411-1421.
[79]A.S. K Friedrich, Tribology of polymeric nanocomposites. 2013.
[80]M. Godet, Third-bodies in tribology. Wear. 136(1990)p. 29-45.
[81]M. Godet, The third-body approach: A mechanical view of wear. Wear. 100(1984)p. 437-452.
[82]Y. Berthier, Experimental evidence for friction and wear modelling. Wear. 139(1990)p. 77-92.
[83]I. Iordanoff, et al., A Review of Recent Approaches for Modeling Solid Third Bodies. Journal of Tribology. 124(2002)p.
[84]S. Descartes and Y. Berthier, Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear. 252(2002)p. 546-556.
[85]S. Descartes, et al., Presence and role of the third body in a wheel–rail contact. Wear. 258(2005)p. 1081-1090.
[86]G. Colas, et al., Decrypting third body flows to solve dry lubrication issue – MoS2 case study under ultrahigh vacuum. Wear. 305(2013)p. 192-204.
[87]R. Sothornvit, Effect of hydroxypropyl methylcellulose and lipid on mechanical properties and water vapor permeability of coated paper. Food research international. 42(2009)p. 307-311.
[88]R. Villalobos, P. Hernández-Muñoz, and A. Chiralt, Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids. 20(2006)p. 502-509.
[89]L. Sirghi, Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts. Applied Physics Letters. 82(2003)p. 3755-3757.
[90]H. Barsett, et al., Polysaccharides I: Structure, characterisation and use. Vol. 186. 2005: Springer Science & Business Media.
[91]G. Biresaw and C. Carriere, Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends. Journal of Polymer Science Part B: Polymer physics. 39(2001)p. 920-930.
[92]彭耀慶, 以硬脂酸增進羥丙基甲基纖維素複合膜疏水性與巨觀尺度下磨潤性質之研究. 成功大學機械工程學系學位論文, (2017)p. 1-111.
[93]J. Feng and Z. Guo, Wettability of graphene: from influencing factors and reversible conversions to potential applications. Nanoscale Horizons. 4(2019)p. 339-364.
[94]T. Young, III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London. 95(1805)p. 65-87.
[95]P.-G.d. Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena. 2004: Springer-Verlag New York.
[96]K.J. Kubiak, et al., Wettability versus roughness of engineering surfaces. Wear. 271(2011)p. 523-528.
[97]江韶哲, 石墨烯於奈米銅上製備參數與纖維素複合塗層磨潤性質研究. 成功大學機械工程學系學位論文, (2018)p. pp.1-140.
[98]W.J. Kim, T.J. Lee, and S.H. Han, Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon. 69(2014)p. 55-65.
[99]S.C. Shi and T.F. Huang, Self-Healing Materials for Ecotribology. Materials (Basel). 10(2017)p.
[100]R. Leach and H. Haitjema, Bandwidth characteristics and comparisons of surface texture measuring instruments. Measurement Science and Technology. 21(2010)p. 032001.
[101]Z. Cui, A.P. Martinez, and D.H. Adamson, PMMA functionalized boron nitride sheets as nanofillers. Nanoscale. 7(2015)p. 10193-7.
[102]F. Memarian, Graphene Young’s modulus: Molecular mechanics and DFT treatments. Vol. 85. 2015. 348-356.
[103]M. Sedlaček, B. Podgornik, and J. Vižintin, Influence of surface preparation on roughness parameters, friction and wear. Wear. 266(2009)p. 482-487.
[104]C. Piao, J. Winandy, and T. Shupe, From hydrophilicity to hydrophobicity: A critical review: Part I. Wettability and surface behavior. 42(2010)p. 490-510.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top