跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王仁宏
研究生(外文):Jen-HungWang
論文名稱:多道次伸線製程中之多目標最佳化模擬分析
論文名稱(外文):Optimization with multiple objectives in multiple passes of wire drawing process
指導教授:羅裕龍
指導教授(外文):Yu-Lung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:84
中文關鍵詞:伸線製程最佳化眼模幾何設計
外文關鍵詞:Wire drawingOptimizationDie design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
伸線製程是一種塑性變形過程,逐漸減小線材的直徑。在該過程中,拉絲以通過單個模具(單道次製程)或多個模具(多道次製程)。面積縮減比分佈是多道次製程設計的關鍵部分。模具的幾何設計也會影響產品品質和加工時的能量消耗。另外,反向拉力的施加可以顯著降低模具的最大壓力並且延長模具的使用壽命。在這項研究中,設計並優化了五道鋼(AISI 1022低碳鋼合金)拉拔工藝,直徑從5.5mm縮減到2.75mm。每道次的拉絲速度都在特別在有限元法中控制。採用田口正交陣列(L_16 (4^3))建立不同有限元情況下的參數組合。在模擬完成特定通過後,人工神經網絡(ANN)用於訓練一般模型。然後,基於人工神經網絡(ANNs)生成的模型,採用遺傳算法(GA)尋找當道次的最佳參數組合。
本研究中有三個優化目標 - 1. 拉拔力,為了減少能量消耗。 2. 線材表面的最大軸向應力,以便維持產品品質。 3. 模具上的最大應力,它會影響模具的磨損。所以,這是一項多目標的優化。其中,Meta模型的概念已經付諸實踐,因為有限元素法取代了現實世界的實驗,然後訓練了ANN模型以找到有限元素法的通解。在優化過程中,由於線材的不均勻變形,優化過程必須從第一道次開始,在針對之後的道次繼續。需要固定先前通過的參數以產生類似的非均勻變形和殘餘應力分佈;如果先前道次的參數改變,則會出現不同的模擬結果。最後,針對直進式伸線機,本研究發展出了一種機制來執行優化的結果。
Wire drawing is a plastic deformation process to gradually reduce the diameter of the wire rod. During the process, a wire is drawn to pass through either a die (single-pass process) or a series of dies (multi-pass process). Reduction ratio distribution is a crucial part of design in multi-pass process. Geometric designs of dies also affect the quality of product and the cost of energy. Additionally, the application of back tension can substantially reduce the maximum pressure of dies and incidentally extend service life of dies. In this research, a five passes steel (AISI 1022 Alloy) drawing process, from 5.5mm to 2.75mm in diameter, is designed and optimized. The drawing velocities in every pass were deliberately controlled in Finite Element Method. Taguchi Orthogonal arrays (L_16 (4^3)) was adopted to build up the parameter combination in different FEM cases. Artificial Neural Networks (ANNs) were used to train a general model after simulations were all finish in the specific pass. Then, Genetic Algorithm (GA) was employed to find the best combination of parameters in the specific pass based on the model generated by Artificial Neural Networks (ANNs). There were three optimization targets in this study— 1. The drawing force, relative to the cost of energy. 2. The maximum axial stress on wire surface, to maintain decent quality of product. 3. The maximum stress on dies, which influences the wear of dies. For instance, it is a multiple objective task. In general, the concept of Meta Model was taken into practice since the FEM was substituted for the real-world experiments and then the ANN model was trained to find a general solution of FEM. The process of optimization must start from the first to the fifth pass in sequence due to the nonuniform deformation. The parameters of previous passes need to be fixed in order to create the similar nonuniform deformation and residual stress distribution. In case the parameters of previous passes alter, different results appear. At last, a mechanism was invented to operate the optimization results.
Table of Contents
Abstract II
中文摘要 IV
致謝 VI
List of Tables XI
List of Figures XIV
Chapter 1 Introduction 1
1.1 Preface 1
1.1.1 The mechanism of wire drawing 1
1.2 Literature review 3
1.2.1 Experiments and simulations 3
1.2.2 Artificial intelligence adopted in wire drawing 8
1.3 Motivation of research 10
Chapter 2 Theory and Method 11
2.1 Factory case description 11
2.2 Rules of experience in designating reduction ratios for multi-pass process 11
2.2.1 Introduction of basic parameters and formulas 11
2.2.2 Steps of distributing the reduction ratios to each pass 12
2.3 Optimization methodology 14
2.4 Parameters and objectives of optimization system 16
2.4.1 Three parameters in the reduction angle, bearing length, and back tension 17
2.5 Optimization objectives 19
2.5.1 Drawing force analysis 19
2.5.2 Wire stress analysis 20
2.5.3 Die stress analysis 21
Chapter 3 Optimization techniques 23
3.1 Meta model 23
3.1.1 Orthogonal test table from Taguchi method 24
3.1.2 Neural Network 26
3.2 Genetic Algorithm 29
Chapter 4 Simulation settings 33
4.1 The software of simulation 33
4.2 Basic assumptions 34
4.2.1 AISI 1022 Low Carbon Steel 35
4.2.2 Coefficient of Coulomb friction 39
4.2.3 Wire drawing velocity 40
4.3 Mesh convergence study 41
42
Chapter 5 Result of simulation and optimization 44
5.1 Results of the 1st pass 44
5.1.1 16 results of simulation 44
5.1.2 Introduction of ANOVA test 45
5.1.3 Outcomes after ANOVA test 46
5.1.4 NN-GA optimization 48
5.2 Results of the 2nd pass 51
5.2.1 16 results of simulation 51
5.2.2 Outcomes after ANOVA test 52
5.2.3 NN-GA optimization 55
5.3 Results of the 3rd pass 57
5.3.1 16 results of simulation 57
5.3.2 Outcomes after ANOVA test 58
5.3.3 NN-GA optimization 61
62
5.4 Results of the 4th pass 64
5.4.1 16 results of simulation 64
5.4.2 Outcomes after ANOVA test 65
5.4.3 NN-GA optimization 67
5.5 Results of the 5th pass 69
5.5.1 16 Results of simulation 69
5.5.2 Outcomes after ANOVA test 70
5.5.3 NN-GA optimization 72
Chapter 6 Application of optimization results upon wire drawing machine 75
6.1 Brief explanation of the mechanism 75
6.2 Mechanical system of the optimization results 78
Chapter 7 Conclusions 81
Reference 82
[1]林子超, 孫方宏, CVD金剛石涂層拉拔模具設計、制備及應用, 博士論文, 上海交通大學, 2016.
[2]P. Brierley and B. Batty, Data mining with neural networksan applied example in understanding electricity consumption patterns, Knowledge discovery and data mining, vol. 12, pp. 240-303, 1999.
[3]S. Kajino and M. Asakawa, Effect of “additional shear strain layer on tensile strength and microstructure of fine drawn wire, Journal of materials processing technology, vol. 177, no. 1-3, pp. 704-708, 2006.
[4]E. M. Rubio, A. M. Camacho, L. Sevilla, and M. A. Sebastian, Calculation of the forward tension in drawing processes, Journal of Materials Processing Technology, vol. 162, pp. 551-557, 2005.
[5]S. Hollinger, E. Depraetere, and O. Giroux, Wear mechanism of tungsten carbide dies during wet drawing of steel tyre cords, Wear, vol. 255, no. 7-12, pp. 1291-1299, 2003.
[6]欒驚天, 張雪飛, 周天國, 高峰, 鋁導線高速拉伸過程數值模擬與實驗研究, 碩士論文, 沈陽大學, 2014.
[7]T. T. Sasaki, R. A. Morris, G. B. Thompson, Y. Syarif, and D. Fox, Formation of ultra-fine copper grains in copper-clad aluminum wire, Scripta Materialia, vol. 63, no. 5, pp. 488-491, 2010.
[8]K. S. Kim, J. Y. Song, E. K. Chung, J. K. Park, and S. H. Hong, Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires, Mechanics of Materials, vol. 38, no. 1-2, pp. 119-127, 2006.
[9]W. I. Clark, A. J. Shih, R. L. Lemaster, and S. B. McSpadden, Fixed abrasive diamond wire machining—part II: experiment design and results, International Journal of Machine Tools and Manufacture, vol. 43, no. 5, pp. 533-542, 2003.
[10]G. L. Baranov, Strain Hardening in Multipass Drawing of a Round Nonhollow Profile, Steel in Translation, vol. 48, no. 9, pp. 606-609, 2018.
[11]T. Massé, L. Fourment, P. Montmitonnet, C. Bobadilla, and S. Foissey, The optimal die semi-angle concept in wire drawing, examined using automatic optimization techniques, International journal of material forming, vol. 6, no. 3, pp. 377-389, 2013.
[12]S. Roy, S. Ghosh, and R. Shivpuri, Optimal design of process variables in multi-pass wire drawing by genetic algorithms, Journal of Manufacturing Science and Engineering, vol. 118, no. 2, pp. 244-251, 1996.
[13]張文超, 陳文琳, 武大鵬, 程穎, 基于BP神經網絡和遺傳算法的鋼絲拉拔優化設計, STEEL WIRE PRODUCTS, vol. 36, no. 3, 2010.
[14]M. Yilmaz and H. M. Ertunc, The prediction of mechanical behavior for steel wires and cord materials using neural networks, Materials & design, vol. 28, no. 2, pp. 599-608, 2007.
[15]S. Roy, S. Ghosh, and R. Shivpuri, A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithms, International Journal of Machine Tools and Manufacture, vol. 37, no. 1, pp. 29-44, 1997.
[16]S. K. Lee, I. K. Lee, S. Y. Lee, and S. K. Hwang, Fabrication of 50.0 μm ultra-fine pure rhodium wire, using a multi-pass wire drawing process, for probe card pins, Materials, vol. 12, no. 13, p. 2194, 2019.
[17]H. H. Jo, S. K. Lee, M. A. Kim, and B. M. Kim, Pass schedule design system in the dry wire-drawing process of high carbon steel, Journal of Engineering Manufacture, vol. 216, no. 3, pp. 365-373, 2002.
[18]A. J. S. Egea, H. A. G. Rojas, D. J. Celentano, J. J. Perió, and J. Cao, Thermomechanical analysis of an electrically assisted wire drawing process, Journal of Manufacturing Science and Engineering, vol. 139, no. 11, p. 111017, 2017.
[19]宋良浩, 李柏林, 基于知識工程的拉絲機參數化設計, 碩士論文, 西南交通大學, 2012.
[20]A. M. Camacho, R. Domingo, E. Rubio, and C. González, Analysis of the influence of back-pull in drawing process by the finite element method, Journal of Materials Processing Technology, vol. 164, pp. 1167-1174, 2005.
[21]D. J. Celentano, M. A. Palacios, E. L. Rojas, M. A. Cruchaga, A. Artigas, and A. E. Monsalve, Simulation and experimental validation of multiple-step wire drawing processes, Finite Elements in Analysis and Design, vol. 45, no. 3, pp. 163-180, 2009.
[22]A. Skołyszewski and M. Paćko, Back tension value in the fine wire drawing process, Journal of Materials Processing Technology, vol. 80, pp. 380-387, 1998.
[23]K. T. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments. Chapman and Hall/CRC, 2005.
[24]D. C. Chen and J. Y. Huang, Design of brass alloy drawing process using Taguchi method, Materials Science and Engineering, vol. 464, no. 1-2, pp. 135-140, 2007.
[25]K. F. Man, K. S. Tang, and S. Kwong, Genetic algorithms: concepts and applications [in engineering design], IEEE transactions on Industrial Electronics, vol. 43, no. 5, pp. 519-534, 1996.
[26]M. Ehrgott, Multicriteria optimization, Springer Science & Business Media, 2005.
[27]B. E. Cohanim, J. N. Hewitt, and O. D. Weck, The design of radio telescope array configurations using multiobjective optimization: Imaging performance versus cable length, The Astrophysical Journal Supplement Series, vol. 154, no. 2, p. 705, 2004.
[28]MakeItFrom.com. Available: https://www.makeitfrom.com/material-properties/Cold-Drawn-1022-Carbon-Steel
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top