|
[1]Hojjat, M., S.G. Etemad, R. Bagheri and J. Thibault, Turbulent forced convection heat transfer of non-Newtonian nanofluids. Experimental Thermal and Fluid Science, 2011. 35(7): p. 1351-1356 [2]Choi, S.U. and J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. 1995, Argonne National Lab., IL (United States). [3]Eastman, J., U. Choi, S. Li, L. Thompson and S. Lee, Enhanced thermal conductivity through the development of nanofluids. MRS online proceedings library archive, 1996. 457. [4]Brinkman, H., The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 1952. 20(4): p. 571-571. [5]Hadad, K., A. Rahimian, and M. Nematollahi, Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor. annals of nuclear energy, 2013. 60: p. 287-294. [6]Yang, L., J.-L. Tian, Z. Yang, Y. Li, C.-H. Fu, Y.-H. Zhu and X.-L. Pang, Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field. Petroleum, 2015. 1(1): p. 68-74. [7]Gao, S.X. and J.P. Hartnett, Steady flow of non-Newtonian fluids through rectangular ducts. International communications in heat and mass transfer, 1993. 20(2): p. 197-210. [8]Gao, S.X. and J.P. Hartnett, Heat transfer behavior of Reiner-Rivlin fluids in rectangular ducts. International journal of heat and mass transfer, 1996. 39(6): p. 1317-1324. [9]Moraveji, M.K., S.M.H. Haddad, and M. Darabi, Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics. International Communications in Heat and Mass Transfer, 2012. 39(7): p. 995-999. [10]Esmaeilnejad, A., H. Aminfar, and M.S. Neistanak, Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids. International Journal of Thermal Sciences, 2014. 75: p. 76-86. [11]Tajik Jamal-Abad, M., M. Dehghan, S. Saedodin, M.S. Valipour and A. Zamzamian, An experimental investigation of rheological characteristics of non-Newtonian nanofluids. Journal of Heat and Mass Transfer Research, 2014. 1(1): p. 17-23. [12]Asmantas, L., M. Nemira, and V. Trilikauskas, Coefficients of heat transfer and hydraulic drag of a twisted oval tube. Heat transfer. Soviet research, 1985. 17(4): p. 103-109. [13]Si, Q., Q. Xia, L. Liang and D. Li, Investigation of heat transfer and flow resistance on twisted tube heat exchanger. Journal of Chemical Industry and Engineering (China), 1995. 46(5): p. 601-608. [14]Zhang, X.-X., G.-H. Wei, and Z.-F. Sang, Experimental research of heat transfer and flow friction properties in twisted tube heat exchanger. Huaxue Gongcheng(Chemical Engineering), 2007. 35(2): p. 17-20. [15]Bejan, A., A study of entropy generation in fundamental convective heat transfer. Journal of heat transfer, 1979. 101(4): p. 718-725. [16]Shah, R.K. and T. Skiepko, Entropy generation extrema and their relationship with heat exchanger effectiveness—number of transfer unit behavior for complex flow arrangements. Journal of heat transfer, 2004. 126(6): p. 994-1002. [17]Guo, Z.-Y., H.-Y. Zhu, and X.-G. Liang, Entransy—a physical quantity describing heat transfer ability. International Journal of Heat and Mass Transfer, 2007. 50(13-14): p. 2545-2556. [18]Chen, Q., M. Wang, N. Pan and Z.-Y. Guo, Optimization principles for convective heat transfer. Energy, 2009. 34(9): p. 1199-1206. [19]Chen, Q., X.-G. Liang, and Z.-Y. Guo, Entransy theory for the optimization of heat transfer–a review and update. International Journal of Heat and Mass Transfer, 2013. 63: p. 65-81. [20]Guo, Z., D. Li, and B. Wang, A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 1998. 41(14): p. 2221-2225. [21]Manninen, M., V. Taivassalo, and S. Kallio, On the mixture model for multiphase flow. 1996, Technical Research Centre of Finland Finland. [22]Schiller, L., A drag coefficient correlation. Zeit. Ver. Deutsch. Ing., 1933. 77: p. 318-320. [23]Miller, A. and D. Gidaspow, Dense, vertical gas‐solid flow in a pipe. AIChE journal, 1992. 38(11): p. 1801-1815. [24]Ishii, M. and T. Hibiki, Thermo-fluid dynamics of two-phase flow. 2010: Springer Science & Business Media. [25]Mahian, O., A. Kianifar, C. Kleinstreuer, A.-N. Moh’d A, I. Pop, A.Z. Sahin and S. Wongwises, A review of entropy generation in nanofluid flow. International Journal of Heat and Mass Transfer, 2013. 65: p. 514-532. [26]Hamilton, R.L. and O. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1962. 1(3): p. 187-191. [27]Patankar, S.V. and D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. 1983, Elsevier. p. 54-73. [28]Hsu, C.-J., Numerical heat transfer and fluid flow. 1981, Taylor & Francis. [29]Johnson, A.T., Biological process engineering: an analogical approach to fluid flow, heat transfer, and mass transfer applied to biological systems. 1999: John Wiley & Sons.
|