|
[1]Al‐Mobarak, N., Comparative study of some metallic biomaterials used as implants, Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 39(7), 486-491, 2008. [2]Anthony, T. and Cline, H., Surface rippling induced by surface‐tension gradients during laser surface melting and alloying, Journal of Applied Physics, 48(9), 3888-3894, 1977. [3]Babar, S. and Weaver, J., Optical constants of Cu, Ag, and Au revisited, Applied Optics, 54(3), 477-481, 2015. [4]Boley, C., Khairallah, S. A., and Rubenchik, A. M., Calculation of laser absorption by metal powders in additive manufacturing, Applied optics, 54(9), 2477-2482, 2015. [5]Boley, C. D., Mitchell, S. C., Rubenchik, A. M., and Wu, S. S., Metal powder absorptivity: modeling and experiment, Applied optics, 55(23), 6496-6500. doi: 10.1364/AO.55.006496, 2016. [6]Cao, X.-j., Jahazi, M., Immarigeon, J., and Wallace, W., A review of laser welding techniques for magnesium alloys, Journal of Materials Processing Technology, 171(2), 188-204, 2006. [7]Castellani, C., Lindtner, R. A., Hausbrandt, P., Tschegg, E., Stanzl-Tschegg, S. E., Zanoni, G., Beck, S., and Weinberg, A. M., Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater, 7(1), 432-440. doi: 10.1016/j.actbio.2010.08.020, (2011). [8]Cengel, Y., Heat and mass transfer: fundamentals and applications: McGraw-Hill Higher Education, 2014. [9]Chaya, A., Yoshizawa, S., Verdelis, K., Myers, N., Costello, B. J., Chou, D. T., Pal, S., Maiti, S., Kumta, P. N., and Sfeir, C., In vivo study of magnesium plate and screw degradation and bone fracture healing, Acta Biomater, 18, 262-269. doi: 10.1016/j.actbio.2015.02.010, 2015. [10]Chung Ng, C., Savalani, M., and Chung Man, H., Fabrication of magnesium using selective laser melting technique, Rapid Prototyping Journal, 17(6), 479-490. doi: 10.1108/13552541111184206, 2011. [11]Dilip, J., Anam, M. A., Pal, D., and Stucker, B., A short study on the fabrication of single track deposits in SLM and characterization, Proceedings of the Solid Freeform Fabrication Symposium (pp. 1644-1659), 2016. [12]Dinsdale, A., SGTE data for pure elements, Calphad, 15(4), 317-425, (1991). [13]Fischer, P., Romano, V., Weber, H.-P., and Kolossov, S., Pulsed laser sintering of metallic powders, Thin Solid Films, 453, 139-144, 2004. [14]Foroozmehr, A., Badrossamay, M., Foroozmehr, E., and Golabi, S. i., Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed, Materials & Design, 89, 255-263. doi: 10.1016/j.matdes.2015.10.002, 2016. [15]Gusarov, A., Laoui, T., Froyen, L., and Titov, V., Contact thermal conductivity of a powder bed in selective laser sintering, International Journal of Heat and Mass Transfer, 4(6), 1103-1109, 2003. [16]Gusarov, A., Yadroitsev, I., Bertrand, P., and Smurov, I., Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting, Journal of heat transfer, 131(7), 072101, 2009. [17]He, J., Jiang, B., Yang, Q., Li, X., Xia, X., and Pan, F., Influence of pre-hardening on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet, Journal of Alloys and Compounds, 621, 301-306, 2015. [18]Hofstetter, J., Martinelli, E., Weinberg, A. M., Becker, M., Mingler, B., Uggowitzer, P. J., and Löffler, J. F., Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo, Corrosion Science, 91, 29-36, 2015. [19]Hu, D., Wang, Y., Zhang, D., Hao, L., Jiang, J., Li, Z., and Chen, Y., Experimental investigation on selective laser melting of bulk net-shape pure magnesium, Materials and Manufacturing Processes, 30(11), 1298-1304. doi: 10.1080/10426914.2015.1025963, 2015. [20]Kamath, C., Data mining and statistical inference in selective laser melting, The International Journal of Advanced Manufacturing Technology, 86(5-8), 1659-1677, 2016. [21]Khaing, M., Fuh, J., and Lu, L., Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts, Journal of Materials Processing Technology, 113(1-3), 269-272, 2001. [22]King, W. E., Barth, H. D., Castillo, V. M., Gallegos, G. F., Gibbs, J. W., Hahn, D. E., Kamath, C., and Rubenchik, A. M., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, Journal of Materials Processing Technology, 214(12), 2915-2925. doi: 10.1016/j.jmatprotec.2014.06.005, 2014. [23]Klocke, F. and Wagner, C., Coalescence behaviour of two metallic particles as base mechanism of selective laser sintering, CIRP Annals, 52(1), 177-180, 2003. [24]Kruth, J. P., Froyen, L., Van Vaerenbergh, J., Mercelis, P., Rombouts, M., and Lauwers, B., Selective laser melting of iron-based powder, Journal of Materials Processing Technology, 149(1-3), 616-622. doi: 10.1016/j.jmatprotec.2003.11.051, 2004. [25]Maguire, M. E. and Cowan, J. A., Magnesium chemistry and biochemistry, Biometals, 15(3), 203-210, 2002. [26]Manakari, V., Parande, G., and Gupta, M., Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review, Metals, 7(1). doi: 10.3390/met7010002, 2016. [27]Mills, K. C., Recommend values of thermophysical properties for selected commercial alloys, Woodhead Publishing, 2002. [28]Multiphysics, C. and Module, C. M. H. T., COMSOL multiphysics user’s guide, Version: COMSOL Multiphysics, 3, 2014. [29]Ng, C. C., Savalani, M. M., Lau, M. L., and Man, H. C., Microstructure and mechanical properties of selective laser melted magnesium, Applied Surface Science, 257(17), 7447-7454. doi: 10.1016/j.apsusc.2011.03.004, 2011. [30]Ng, C. C., Savalani, M. M., Man, H. C., and Gibson, I., Layer manufacturing of magnesium and its alloy structures for future applications, Virtual and Physical Prototyping, 5(1), 13-19. doi: 10.1080/17452751003718629, 2010. [31]Pedrotti, F. L., Pedrotti, L. M., and Pedrotti, L. S., Introduction to optics: Cambridge University Press, 2017. [32]Plaass, C., von Falck, C., Ettinger, S., Sonnow, L., Calderone, F., Weizbauer, A., and Daniilidis, K., Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies–3 year results of a randomized clinical trial, Journal of Orthopaedic Science, 23(2), 321-327. doi: 10.1016/j.jos.2017.11.005, 2018. [33]Razavi, S., Tolson, B. A., and Burn, D. H., Review of surrogate modeling in water resources, Water Resources Research, 48(7), 2012. [34]Salehi, M., Maleksaeedi, S., Farnoush, H., Nai, M. L. S., Meenashisundaram, G. K., and Gupta, M, An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium, Powder technology, 333, 252-261, 2018. [35]Savalani, M., Hao, L. and Harris, R. A., Evaluation of CO2 and Nd: YAG lasers for the selective laser sintering of HAPEX®, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(2), 171-182, 2006. [36]Savalani, M. M. and Pizarro, J. M., Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium, Rapid Prototyping Journal, 22(1), 115-122. doi: 10.1108/rpj-07-2013-0076, 2016. [37]Sezer, N., Evis, Z., Kayhan, S. M., Tahmasebifar, A., and Koç, M., Review of magnesium-based biomaterials and their applications, Journal of magnesium and alloys, 6(1), 23-43, 2018. [38]Spierings, A. B., Schneider, M., and Eggenberger, R., Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyping Journal, 17(5), 380-386. doi: 10.1108/13552541111156504, 2011. [39]Staiger, M. P., Pietak, A. M., Huadmai, J., and Dias, G., Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials 27(9), 1728-1734, 2006. [40]Touloukian, Y. S. and Makita, T., Thermophysical properties of matter-the TPRC data series. Volume 6. Specific heat-nonmetallic liquids and gases.(Reannouncement). Data book (No. AD-A-951940/6/XAB). Purdue Univ., Lafayette, IN (United States). Thermophysical and Electronic Properties Information Center, 1970. [41]Tran, H.-C. and Lo, Y.-L., Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration, Journal of Materials Processing Technology, 255, 411-425. doi: 10.1016/j.jmatprotec.2017.12.024, 2018. [42]Tran, H.-C. and Lo, Y.-L., Systematic Approach for Determining Optimal Processing Parameters to Produce Parts with High Density in Selective Laser Melting Process, Revised for The International Journal of Advanced Manufacturing Technology, 2019. [43]Tran, H.-C., Huang, M.-H., and Lo, Y.-L., Analysis of Scattering and Absorption Characteristics of Metal Powder Layer for Selective Laser Sintering, IEEE/ASME Transactions on Mechatronics, 22(4), 1807-1817. doi: 10.1109/tmech.2017.2705090, 2017. [44]Vander Voort, G., Metallography of Magnesium and its Alloys. Buehler Tech-Notes, 4(2), 2015. [45]Walker, J., Shadanbaz, S., Kirkland, N. T., Stace, E., Woodfield, T., Staiger, M. P., and Dias, G. J., Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(4), 1134-1141, 2012. [46]Xiao, W., Easton, M. A., Zhu, S., Dargusch, M. S., Gibson, M. A., Jia, S., and Nie, J., Casting defects and mechanical properties of high pressure die cast Mg‐Zn‐Al‐RE Alloys, Advanced Engineering Materials, 14(1‐2), 68-76, 2012. [47]Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., Single track formation in selective laser melting of metal powders, Journal of Materials Processing Technology, 210(12), 1624-1631. doi: 10.1016/j.jmatprotec.2010.05.010, 2010. [48]Yang, Y., Wu, P., Lin, X., Liu, Y., Bian, H., Zhou, Y., Gao, C, and Shuai, C., System development, formability quality and microstructure evolution of selective laser-melted magnesium, Virtual and Physical Prototyping, 11(3), 173-181. doi: 10.1080/17452759.2016.1210522, 2016. [49]Zhang, Z., Huang, Y., Rani Kasinathan, A., Imani Shahabad, S., Ali, U., Mahmoodkhani, Y., and Toyserkani, E., 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity, Optics & Laser Technology, 109, 297-312. doi: 10.1016/j.optlastec.2018.08.012, 2019. [50]Zhang, Z., Tremblay, R., and Dube, D., Microstructure and mechanical properties of ZA104 (0.3–0.6 Ca) die-casting magnesium alloys, Materials Science and Engineering: A, 385(1-2), 286-291, 2004. [51]Zreiqat, H., Howlett, C., Zannettino, A., Evans, P., Schulze‐Tanzil, G., Knabe, C., and Shakibaei, M., Mechanisms of magnesium‐stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 62(2), 175-184, 2002.
|